IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v79y2004i3p291-308.html
   My bibliography  Save this article

Current status of actual fuel-consumptions of petrol-fuelled passenger vehicles in Japan

Author

Listed:
  • Kudoh, Yuki
  • Kondo, Yoshinori
  • Matsuhashi, Keisuke
  • Kobayashi, Shinji
  • Moriguchi, Yuichi

Abstract

An actual fuel-consumption (FC) database with hierarchic structure was established based upon voluntary reported fuel-consumption log data collected through an internet-connected mobile-phone system. The current status of the actual FC in Japan has been investigated by the database and CO2 emissions from petrol-fuelled passenger vehicles (PVs) were estimated. It was confirmed that there lies a statistically-significant difference between actual FC and Japanese 10.15 mode FC and that the actual FCs differ by geographical and social aspects. In addition, the estimated actual FC-based CO2 emissions were consistent with the present CO2 emissions. Since a large amount of CO2 emissions mitigation in the transportation sector is expected by improving the FC of motorcars, the following items are required to significantly reduce the CO2 emissions in the motorcar sector: (1) comprehensive measures to reduce CO2 emissions regarding actual FC, (2) R&D of motorcars with high actual FC and (3) endorsement and execution of environmentally-friendly driving to improve actual FC.

Suggested Citation

  • Kudoh, Yuki & Kondo, Yoshinori & Matsuhashi, Keisuke & Kobayashi, Shinji & Moriguchi, Yuichi, 2004. "Current status of actual fuel-consumptions of petrol-fuelled passenger vehicles in Japan," Applied Energy, Elsevier, vol. 79(3), pages 291-308, November.
  • Handle: RePEc:eee:appene:v:79:y:2004:i:3:p:291-308
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(03)00240-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kudoh, Yuki & Ishitani, Hisashi & Matsuhashi, Ryuji & Yoshida, Yoshikuni & Morita, Kouji & Katsuki, Shinichi & Kobayashi, Osamu, 2001. "Environmental evaluation of introducing electric vehicles using a dynamic traffic-flow model," Applied Energy, Elsevier, vol. 69(2), pages 145-159, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shigemi Kagawa & Yuriko Goto & Sangwon Suh & Keisuke Nansai & Yuki Kudoh, 2012. "Accounting for Changes in Automobile Gasoline Consumption in Japan: 2000–2007," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 1(1), pages 1-27, December.
    2. Sina, Naser & Nasiri, Sayyad & Karkhaneh, Vahid, 2015. "Effects of resistive loads and tire inflation pressure on tire power losses and CO2 emissions in real-world conditions," Applied Energy, Elsevier, vol. 157(C), pages 974-983.
    3. Ryoji Hasegawa & Shigemi Kagawa & Makiko Tsukui, 2015. "Carbon footprint analysis through constructing a multi-region input–output table: a case study of Japan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-20, December.
    4. Zeng, Yuan & Tan, Xianchun & Gu, Baihe & Wang, Yi & Xu, Baoguang, 2016. "Greenhouse gas emissions of motor vehicles in Chinese cities and the implication for China’s mitigation targets," Applied Energy, Elsevier, vol. 184(C), pages 1016-1025.
    5. Carvalho, Irene & Baier, Thomas & Simoes, Ricardo & Silva, Arlindo, 2012. "Reducing fuel consumption through modular vehicle architectures," Applied Energy, Elsevier, vol. 93(C), pages 556-563.
    6. Kagawa, Shigemi & Nansai, Keisuke & Kudoh, Yuki, 2009. "Does product lifetime extension increase our income at the expense of energy consumption?," Energy Economics, Elsevier, vol. 31(2), pages 197-210.
    7. Shigemi Kagawa & Yuki Kudoh & Keisuke Nansai & Tomohiro Tasaki, 2008. "The Economic and Environmental Consequences of Automobile Lifetime Extension and Fuel Economy Improvement: Japan's Case," Economic Systems Research, Taylor & Francis Journals, vol. 20(1), pages 3-28.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saxena, Samveg & Gopal, Anand & Phadke, Amol, 2014. "Electrical consumption of two-, three- and four-wheel light-duty electric vehicles in India," Applied Energy, Elsevier, vol. 115(C), pages 582-590.
    2. Requia, Weeberb J. & Adams, Matthew D. & Arain, Altaf & Koutrakis, Petros & Ferguson, Mark, 2017. "Carbon dioxide emissions of plug-in hybrid electric vehicles: A life-cycle analysis in eight Canadian cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1390-1396.
    3. Hu, Xiaosong & Murgovski, Nikolce & Johannesson, Lars & Egardt, Bo, 2013. "Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes," Applied Energy, Elsevier, vol. 111(C), pages 1001-1009.
    4. Kristoffersen, Trine Krogh & Capion, Karsten & Meibom, Peter, 2011. "Optimal charging of electric drive vehicles in a market environment," Applied Energy, Elsevier, vol. 88(5), pages 1940-1948, May.
    5. Zhang, Hao & Cai, Guixin, 2020. "Subsidy strategy on new-energy vehicle based on incomplete information: A Case in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    6. Jiang, C.X. & Jing, Z.X. & Cui, X.R. & Ji, T.Y. & Wu, Q.H., 2018. "Multiple agents and reinforcement learning for modelling charging loads of electric taxis," Applied Energy, Elsevier, vol. 222(C), pages 158-168.
    7. Ferrero, Enrico & Alessandrini, Stefano & Balanzino, Alessia, 2016. "Impact of the electric vehicles on the air pollution from a highway," Applied Energy, Elsevier, vol. 169(C), pages 450-459.
    8. Mu, Yunfei & Wu, Jianzhong & Jenkins, Nick & Jia, Hongjie & Wang, Chengshan, 2014. "A Spatial–Temporal model for grid impact analysis of plug-in electric vehicles," Applied Energy, Elsevier, vol. 114(C), pages 456-465.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:79:y:2004:i:3:p:291-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.