IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v72y2002i1p371-387.html
   My bibliography  Save this article

Heat-load modelling for large systems

Author

Listed:
  • Heller, A. J.

Abstract

No abstract is available for this item.

Suggested Citation

  • Heller, A. J., 2002. "Heat-load modelling for large systems," Applied Energy, Elsevier, vol. 72(1), pages 371-387, May.
  • Handle: RePEc:eee:appene:v:72:y:2002:i:1:p:371-387
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(02)00020-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Watson, S.D. & Lomas, K.J. & Buswell, R.A., 2019. "Decarbonising domestic heating: What is the peak GB demand?," Energy Policy, Elsevier, vol. 126(C), pages 533-544.
    2. Popescu, Daniela & Ungureanu, Florina & Hernández-Guerrero, Abel, 2009. "Simulation models for the analysis of space heat consumption of buildings," Energy, Elsevier, vol. 34(10), pages 1447-1453.
    3. Dahl, Magnus & Brun, Adam & Andresen, Gorm B., 2017. "Decision rules for economic summer-shutdown of production units in large district heating systems," Applied Energy, Elsevier, vol. 208(C), pages 1128-1138.
    4. Freire, Roberto Zanetti & Mazuroski, Walter & Abadie, Marc Olivier & Mendes, Nathan, 2011. "Capacitive effect on the heat transfer through building glazing systems," Applied Energy, Elsevier, vol. 88(12), pages 4310-4319.
    5. Tschopp, Daniel & Tian, Zhiyong & Berberich, Magdalena & Fan, Jianhua & Perers, Bengt & Furbo, Simon, 2020. "Large-scale solar thermal systems in leading countries: A review and comparative study of Denmark, China, Germany and Austria," Applied Energy, Elsevier, vol. 270(C).
    6. Pini Prato, Alessandro & Strobino, Fabrizio & Broccardo, Marco & Parodi Giusino, Luigi, 2012. "Integrated management of cogeneration plants and district heating networks," Applied Energy, Elsevier, vol. 97(C), pages 590-600.
    7. Zhuang, Chaoqun & Choudhary, Ruchi & Mavrogianni, Anna, 2023. "Uncertainty-based optimal energy retrofit methodology for building heat electrification with enhanced energy flexibility and climate adaptability," Applied Energy, Elsevier, vol. 341(C).
    8. Nigitz, Thomas & Gölles, Markus, 2019. "A generally applicable, simple and adaptive forecasting method for the short-term heat load of consumers," Applied Energy, Elsevier, vol. 241(C), pages 73-81.
    9. Lumbreras, Mikel & Garay-Martinez, Roberto & Arregi, Beñat & Martin-Escudero, Koldobika & Diarce, Gonzalo & Raud, Margus & Hagu, Indrek, 2022. "Data driven model for heat load prediction in buildings connected to District Heating by using smart heat meters," Energy, Elsevier, vol. 239(PD).
    10. Lundström, Lukas & Wallin, Fredrik, 2016. "Heat demand profiles of energy conservation measures in buildings and their impact on a district heating system," Applied Energy, Elsevier, vol. 161(C), pages 290-299.
    11. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    12. Difs, Kristina & Danestig, Maria & Trygg, Louise, 2009. "Increased use of district heating in industrial processes - Impacts on heat load duration," Applied Energy, Elsevier, vol. 86(11), pages 2327-2334, November.
    13. D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.
    14. Jae-Ki Byun & Young-Don Choi & Jong-Keun Shin & Myung-Ho Park & Dong-Kurl Kwak, 2012. "Study on the Development of an Optimal Heat Supply Control Algorithm for Group Energy Apartment Buildings According to the Variation of Outdoor Air Temperature," Energies, MDPI, vol. 5(5), pages 1-19, May.
    15. Renaldi, R. & Kiprakis, A. & Friedrich, D., 2017. "An optimisation framework for thermal energy storage integration in a residential heat pump heating system," Applied Energy, Elsevier, vol. 186(P3), pages 520-529.
    16. Braas, Hagen & Jordan, Ulrike & Best, Isabelle & Orozaliev, Janybek & Vajen, Klaus, 2020. "District heating load profiles for domestic hot water preparation with realistic simultaneity using DHWcalc and TRNSYS," Energy, Elsevier, vol. 201(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:72:y:2002:i:1:p:371-387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.