IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v70y2001i2p157-167.html
   My bibliography  Save this article

Energy from waste incineration -- a state of the art emissions review with an emphasis on public acceptability

Author

Listed:
  • Porteous, Andrew

Abstract

The emissions performance of today's, well run state of the art energy from waste incinerators (EfWI) is compared with those which were operational in the early 1990s and the substantial improvements highlighted. Dioxin reduction improvements are analysed. Claimed health effects of emissions are scrutinized and shown to be groundless. The [`]emerging' technologies of pyrolysis or gasification are discussed and their emissions performance compared with best practice EfWI. It is shown that there is little to draw between these contrasting energy recovery options. The role of MSW recycling is scrutinized and it is concluded that EfWI and practicable recycling and composting can work together as part of a truly integrated waste management strategy.

Suggested Citation

  • Porteous, Andrew, 2001. "Energy from waste incineration -- a state of the art emissions review with an emphasis on public acceptability," Applied Energy, Elsevier, vol. 70(2), pages 157-167, October.
  • Handle: RePEc:eee:appene:v:70:y:2001:i:2:p:157-167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(01)00021-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jamasb, T. & Kiamil, H. & Nepal, R., 2008. "Hot Issue and Burning Options in Waste Management: A Social Cost Benefit Analysis of Waste-to-Energy in the UK," Cambridge Working Papers in Economics 0801, Faculty of Economics, University of Cambridge.
    2. M. Pilar Latorre & Margarita Martinez-Nuñez & Carmen Callao, 2021. "Modelling and analysing the relationship between innovation and the European Regulations on hazardous waste shipments," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 21(4), pages 575-594, December.
    3. Zhao, Peitao & Shen, Yafei & Ge, Shifu & Chen, Zhenqian & Yoshikawa, Kunio, 2014. "Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment," Applied Energy, Elsevier, vol. 131(C), pages 345-367.
    4. Murphy, J.D. & McKeogh, E., 2006. "The benefits of integrated treatment of wastes for the production of energy," Energy, Elsevier, vol. 31(2), pages 294-310.
    5. Bujak, J., 2009. "Experimental study of the energy efficiency of an incinerator for medical waste," Applied Energy, Elsevier, vol. 86(11), pages 2386-2393, November.
    6. Hachem-Vermette, Caroline & Grewal, Kuljeet Singh, 2019. "Investigation of the impact of residential mixture on energy and environmental performance of mixed use neighborhoods," Applied Energy, Elsevier, vol. 241(C), pages 362-379.
    7. Anselmo Filho, Pedro & Badr, Ossama, 2004. "Biomass resources for energy in North-Eastern Brazil," Applied Energy, Elsevier, vol. 77(1), pages 51-67, January.
    8. Mühle, S. & Balsam, I. & Cheeseman, C.R., 2010. "Comparison of carbon emissions associated with municipal solid waste management in Germany and the UK," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 793-801.
    9. Rudra, Souman & Tesfagaber, Yohannes Kifle, 2019. "Future district heating plant integrated with municipal solid waste (MSW) gasification for hydrogen production," Energy, Elsevier, vol. 180(C), pages 881-892.
    10. Ripa, M. & Fiorentino, G. & Giani, H. & Clausen, A. & Ulgiati, S., 2017. "Refuse recovered biomass fuel from municipal solid waste. A life cycle assessment," Applied Energy, Elsevier, vol. 186(P2), pages 211-225.
    11. Murphy, J.D. & McKeogh, E., 2004. "Technical, economic and environmental analysis of energy production from municipal solid waste," Renewable Energy, Elsevier, vol. 29(7), pages 1043-1057.
    12. Wang, Na & Chen, Dezhen & Arena, Umberto & He, Pinjing, 2017. "Hot char-catalytic reforming of volatiles from MSW pyrolysis," Applied Energy, Elsevier, vol. 191(C), pages 111-124.
    13. Baran, Burhan & Mamis, Mehmet Salih & Alagoz, Baris Baykant, 2016. "Utilization of energy from waste potential in Turkey as distributed secondary renewable energy source," Renewable Energy, Elsevier, vol. 90(C), pages 493-500.
    14. Achillas, Ch. & Vlachokostas, Ch. & Moussiopoulos, N. & Banias, G. & Kafetzopoulos, G. & Karagiannidis, A., 2011. "Social acceptance for the development of a waste-to-energy plant in an urban area," Resources, Conservation & Recycling, Elsevier, vol. 55(9), pages 857-863.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:70:y:2001:i:2:p:157-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.