IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924022049.html
   My bibliography  Save this article

Technological, economic, and emission analysis of the oxy-combustion process

Author

Listed:
  • Raho, Brenda
  • Giangreco, Marcello
  • Colangelo, Gianpiero
  • Milanese, Marco
  • de Risi, Arturo

Abstract

The high concentration of polluting emissions, and in particular of CO2 in the atmosphere, determines the greenhouse effect, therefore it is necessary to reduce its quantity as much as possible. For this reason, a strong commitment is underway to obtain effective technological improvements and to study adequate operational measures. One measure among these may be the oxy-combustion process.

Suggested Citation

  • Raho, Brenda & Giangreco, Marcello & Colangelo, Gianpiero & Milanese, Marco & de Risi, Arturo, 2025. "Technological, economic, and emission analysis of the oxy-combustion process," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924022049
    DOI: 10.1016/j.apenergy.2024.124821
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924022049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krzysztof Gaska & Agnieszka Generowicz & Anna Gronba-Chyła & Józef Ciuła & Iwona Wiewiórska & Paweł Kwaśnicki & Marcin Mala & Krzysztof Chyła, 2023. "Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change," Energies, MDPI, vol. 16(15), pages 1-19, July.
    2. Gianpiero Colangelo & Brenda Raho & Marco Milanese & Arturo de Risi, 2021. "Numerical Evaluation of a HVAC System Based on a High-Performance Heat Transfer Fluid," Energies, MDPI, vol. 14(11), pages 1-18, June.
    3. Brenda Raho & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2022. "A Critical Analysis of the Oxy-Combustion Process: From Mathematical Models to Combustion Product Analysis," Energies, MDPI, vol. 15(18), pages 1-25, September.
    4. Yang, Xin & Clements, Alastair & Szuhánszki, János & Huang, Xiaohong & Farias Moguel, Oscar & Li, Jia & Gibbins, Jon & Liu, Zhaohui & Zheng, Chuguang & Ingham, Derek & Ma, Lin & Nimmo, Bill & Pourkash, 2018. "Prediction of the radiative heat transfer in small and large scale oxy-coal furnaces," Applied Energy, Elsevier, vol. 211(C), pages 523-537.
    5. Fu, Chao & Gundersen, Truls, 2012. "Using exergy analysis to reduce power consumption in air separation units for oxy-combustion processes," Energy, Elsevier, vol. 44(1), pages 60-68.
    6. Thompson, Shirley & Si, Minxing, 2014. "Strategic analysis of energy efficiency projects: Case study of a steel mill in Manitoba," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 814-819.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ciuła, Józef & Generowicz, Agnieszka & Gronba-Chyła, Anna & Kwaśnicki, Paweł & Makara, Agnieszka & Kowalski, Zygmunt & Wiewiórska, Iwona, 2024. "Energy production from landfill gas, emissions and pollution indicators–Opportunities and barriers to implementing circular economy," Energy, Elsevier, vol. 308(C).
    2. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    3. Domenico Palladino & Flavio Scrucca & Nicolandrea Calabrese & Grazia Barberio & Carlo Ingrao, 2021. "Durum-Wheat Straw Bales for Thermal Insulation of Buildings: Findings from a Comparative Energy Analysis of a Set of Wall-Composition Samples on the Building Scale," Energies, MDPI, vol. 14(17), pages 1-19, September.
    4. Zhang, Huining & Zhou, Peiling & Yuan, Fei, 2021. "Effects of ladle lid or online preheating on heat preservation of ladle linings and temperature drop of molten steel," Energy, Elsevier, vol. 214(C).
    5. Dawid Czajor & Łukasz Amanowicz, 2024. "Methodology for Modernizing Local Gas-Fired District Heating Systems into a Central District Heating System Using Gas-Fired Cogeneration Engines—A Case Study," Sustainability, MDPI, vol. 16(4), pages 1-30, February.
    6. Mansir, Ibrahim B. & Ben-Mansour, Rached & Habib, Mohamed A., 2018. "Oxy-fuel combustion in a two-pass oxygen transport reactor for fire tube boiler application," Applied Energy, Elsevier, vol. 229(C), pages 828-840.
    7. Mu, Ruiqi & Liu, Ming & Huang, Yan & Chong, Daotong & Hu, Zhiping & Yan, Junjie, 2024. "Proposal and performance analysis of a novel hydrogen and power cogeneration system with CO2 capture based on coal supercritical water gasification," Energy, Elsevier, vol. 305(C).
    8. Brenda Raho & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2022. "A Critical Analysis of the Oxy-Combustion Process: From Mathematical Models to Combustion Product Analysis," Energies, MDPI, vol. 15(18), pages 1-25, September.
    9. Fu, Chao & Gundersen, Truls, 2013. "Recuperative vapor recompression heat pumps in cryogenic air separation processes," Energy, Elsevier, vol. 59(C), pages 708-718.
    10. Muhammad Haris Hamayun & Naveed Ramzan & Murid Hussain & Muhammad Faheem, 2020. "Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis," Energies, MDPI, vol. 13(23), pages 1-20, December.
    11. Ertesvåg, Ivar S. & Madejski, Paweł & Ziółkowski, Paweł & Mikielewicz, Dariusz, 2023. "Exergy analysis of a negative CO2 emission gas power plant based on water oxy-combustion of syngas from sewage sludge gasification and CCS," Energy, Elsevier, vol. 278(C).
    12. Zhang, Yongliang & Jin, Bo & Zou, Xixian & Zhao, Haibo, 2016. "A clean coal utilization technology based on coal pyrolysis and chemical looping with oxygen uncoupling: Principle and experimental validation," Energy, Elsevier, vol. 98(C), pages 181-189.
    13. Ditaranto, Mario & Heggset, Tarjei & Berstad, David, 2020. "Concept of hydrogen fired gas turbine cycle with exhaust gas recirculation: Assessment of process performance," Energy, Elsevier, vol. 192(C).
    14. Abdul Quader, M. & Ahmed, Shamsuddin & Dawal, S.Z. & Nukman, Y., 2016. "Present needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO2) Steelmaking (ULCOS) program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 537-549.
    15. Bordbar, Hadi & Maximov, Alexander & Hyppänen, Timo, 2019. "Improved banded method for spectral thermal radiation in participating media with spectrally dependent wall emittance," Applied Energy, Elsevier, vol. 235(C), pages 1090-1105.
    16. Landfahrer, M. & Schluckner, C. & Prieler, R. & Gerhardter, H. & Zmek, T. & Klarner, J. & Hochenauer, C., 2019. "Development and application of a numerically efficient model describing a rotary hearth furnace using CFD," Energy, Elsevier, vol. 180(C), pages 79-89.
    17. Teichgraeber, Holger & Brodrick, Philip G. & Brandt, Adam R., 2017. "Optimal design and operations of a flexible oxyfuel natural gas plant," Energy, Elsevier, vol. 141(C), pages 506-518.
    18. Proskuryakova, L. & Kovalev, A., 2015. "Measuring energy efficiency: Is energy intensity a good evidence base?," Applied Energy, Elsevier, vol. 138(C), pages 450-459.
    19. Nascimento Silva, Fernanda Cristina & Alkmin Freire, Ronaldo Lucas & Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2020. "Comparative assessment of advanced power generation and carbon sequestration plants on offshore petroleum platforms," Energy, Elsevier, vol. 203(C).
    20. Wienchol, Paulina & Szlęk, Andrzej & Ditaranto, Mario, 2020. "Waste-to-energy technology integrated with carbon capture – Challenges and opportunities," Energy, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924022049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.