IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924021822.html
   My bibliography  Save this article

Cooperative game robust optimization control for wind-solar-shared energy storage integrated system based on dual-settlement mode and multiple uncertainties

Author

Listed:
  • Han, Xiaojuan
  • Wang, Zuran
  • Li, Haoyu
  • Liu, Muran

Abstract

Aiming at the problems of renewable energy output uncertainties and single scenario operation mode of energy storage systems, a cooperative game robust optimization control method for wind-solar-shared energy storage system based on dual-settlement mode of power market is proposed in this paper. A cooperative game-based energy management framework under dual settlement mode of electricity market is constructed, the profit relationship between shared energy storage under multiple application scenarios and renewable energy are extracted and the corresponding profit models are established. Considering the multiple uncertainties of renewable energy and electricity prices, combined with robust optimization theory, a multi-level two-stage robust optimization model is established to make optimal electricity trading decisions for renewable energy and shared energy storage. Additionally, the cooperative game robust optimization model is solved by i-C&CG algorithm. The effectiveness of proposed control method is verified through actual operating data of a certain power grid in China. The simulation results show that the cooperative game robust optimization model achieves the optimal operation of the wind-solar-shared energy storage system considering multiple uncertainties, which can improve the ability of the system to cope with the uncertainty risk and the reliability of the system.

Suggested Citation

  • Han, Xiaojuan & Wang, Zuran & Li, Haoyu & Liu, Muran, 2025. "Cooperative game robust optimization control for wind-solar-shared energy storage integrated system based on dual-settlement mode and multiple uncertainties," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021822
    DOI: 10.1016/j.apenergy.2024.124799
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924021822
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124799?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Jun & Su, Changqi, 2021. "Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty," Energy, Elsevier, vol. 223(C).
    2. Wei, F. & Jing, Z.X. & Wu, Peter Z. & Wu, Q.H., 2017. "A Stackelberg game approach for multiple energies trading in integrated energy systems," Applied Energy, Elsevier, vol. 200(C), pages 315-329.
    3. Walker, Awnalisa & Kwon, Soongeol, 2021. "Design of structured control policy for shared energy storage in residential community: A stochastic optimization approach," Applied Energy, Elsevier, vol. 298(C).
    4. Xiao, Jiang-Wen & Yang, Yan-Bing & Cui, Shichang & Liu, Xiao-Kang, 2022. "A new energy storage sharing framework with regard to both storage capacity and power capacity," Applied Energy, Elsevier, vol. 307(C).
    5. Mansouri, Seyed Amir & Nematbakhsh, Emad & Jordehi, Ahmad Rezaee & Marzband, Mousa & Tostado-Véliz, Marcos & Jurado, Francisco, 2023. "An interval-based nested optimization framework for deriving flexibility from smart buildings and electric vehicle fleets in the TSO-DSO coordination," Applied Energy, Elsevier, vol. 341(C).
    6. Li, Qi & Xiao, Xukang & Pu, Yuchen & Luo, Shuyu & Liu, Hong & Chen, Weirong, 2023. "Hierarchical optimal scheduling method for regional integrated energy systems considering electricity-hydrogen shared energy," Applied Energy, Elsevier, vol. 349(C).
    7. Di Liu & Junwei Cao & Mingshuang Liu, 2022. "Joint Optimization of Energy Storage Sharing and Demand Response in Microgrid Considering Multiple Uncertainties," Energies, MDPI, vol. 15(9), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xun & Shao, Zhenguo & Chen, Feixiong & Cheng, Guoyang, 2024. "Multi-game optimization operation strategy for integrated energy system considering spatiotemporal correlation of renewable energy," Energy, Elsevier, vol. 303(C).
    2. Cui, Shiting & Gao, Yao & Zhu, Ruijin, 2024. "A new integrated energy system cluster energy sharing framework adapted to high altitude areas," Applied Energy, Elsevier, vol. 366(C).
    3. Talihati, Baligen & Tao, Shengyu & Fu, Shiyi & Zhang, Bowen & Fan, Hongtao & Li, Qifen & Lv, Xiaodong & Sun, Yaojie & Wang, Yu, 2024. "Energy storage sharing in residential communities with controllable loads for enhanced operational efficiency and profitability," Applied Energy, Elsevier, vol. 373(C).
    4. Bian, Yifan & Xie, Lirong & Ye, Jiahao & Ma, Lan, 2024. "A new shared energy storage business model for data center clusters considering energy storage degradation," Renewable Energy, Elsevier, vol. 225(C).
    5. Jing Yu & Jicheng Liu & Yajing Wen & Xue Yu, 2023. "Economic Optimal Coordinated Dispatch of Power for Community Users Considering Shared Energy Storage and Demand Response under Blockchain," Sustainability, MDPI, vol. 15(8), pages 1-26, April.
    6. Jiahao Chen & Bing Sun & Yuan Zeng & Ruipeng Jing & Shimeng Dong & Jingran Wang, 2023. "An Optimal Scheduling Method of Shared Energy Storage System Considering Distribution Network Operation Risk," Energies, MDPI, vol. 16(5), pages 1-24, March.
    7. Bian, Yifan & Xie, Lirong & Ye, Jiahao & Ma, Lan & Cui, Chuanshi, 2024. "Peer-to-peer energy sharing model considering multi-objective optimal allocation of shared energy storage in a multi-microgrid system," Energy, Elsevier, vol. 288(C).
    8. Yan, Haoran & Hou, Hongjuan & Deng, Min & Si, Lengge & Wang, Xi & Hu, Eric & Zhou, Rhonin, 2024. "Stackelberg game theory based model to guide users’ energy use behavior, with the consideration of flexible resources and consumer psychology, for an integrated energy system," Energy, Elsevier, vol. 288(C).
    9. Yiqi Dong & Zuoji Dong, 2023. "Bibliometric Analysis of Game Theory on Energy and Natural Resource," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    10. Armghan, Hammad & Xu, Yinliang & Bai, Xiang & Ali, Naghmash & Chang, Xinyue & Xue, Yixun, 2024. "A tri-level control framework for carbon-aware multi-energy microgrid cluster considering shared hydrogen energy storage," Applied Energy, Elsevier, vol. 373(C).
    11. Cui, Shiting & Zhu, Ruijin & Wu, Jun, 2024. "A double layer energy cooperation framework for prosumer groups in high altitude areas," Renewable Energy, Elsevier, vol. 224(C).
    12. Qinqin Xia & Yao Zou & Qianggang Wang, 2024. "Optimal Capacity Planning of Green Electricity-Based Industrial Electricity-Hydrogen Multi-Energy System Considering Variable Unit Cost Sequence," Sustainability, MDPI, vol. 16(9), pages 1-20, April.
    13. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    14. Jia, Jiandong & Li, Haiqiao & Wu, Di & Guo, Jiacheng & Jiang, Leilei & Fan, Zeming, 2024. "Multi-objective optimization study of regional integrated energy systems coupled with renewable energy, energy storage, and inter-station energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    15. Lazzari, Florencia & Mor, Gerard & Cipriano, Jordi & Solsona, Francesc & Chemisana, Daniel & Guericke, Daniela, 2023. "Optimizing planning and operation of renewable energy communities with genetic algorithms," Applied Energy, Elsevier, vol. 338(C).
    16. Wang, Lixiao & Jing, Z.X. & Zheng, J.H. & Wu, Q.H. & Wei, Feng, 2018. "Decentralized optimization of coordinated electrical and thermal generations in hierarchical integrated energy systems considering competitive individuals," Energy, Elsevier, vol. 158(C), pages 607-622.
    17. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.
    18. He, Ruofan & Wan, Panbing, 2024. "Electricity market integration in China: The role of government officials’ hometown ties," Energy, Elsevier, vol. 303(C).
    19. Xiaozhi Gao & Han Xiao & Shiwei Xu & Hsiung-Cheng Lin & Pengyu Chang, 2024. "What Is the Optimal Solution for Scheduling Multiple Energy Systems? Overview and Analysis of Integrated Energy Co-Dispatch Models," Energies, MDPI, vol. 17(18), pages 1-25, September.
    20. Shi, Mengshu & Huang, Yuansheng & Lin, Hongyu, 2023. "Research on power to hydrogen optimization and profit distribution of microgrid cluster considering shared hydrogen storage," Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.