IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v256y2019ics0306261919315880.html
   My bibliography  Save this article

Achieving low carbon local energy communities in hot climates by exploiting networks synergies in multi energy systems

Author

Listed:
  • Comodi, Gabriele
  • Bartolini, Andrea
  • Carducci, Francesco
  • Nagaranjan, Balamurugan
  • Romagnoli, Alessandro

Abstract

Design and planning of low carbon cities and districts must consider the synergies between all the energy networks available. Energy systems optimal design thus assumes a critical importance in determining both costs and environmental impact of operating such districts. This is particularly true following the concept of Local Energy Community, with a single entity representing both the demand and the manager of the energy generation assets. This paper proposes an innovative model for the optimal design of an energy community aiming at lowering its carbon footprint. The community is modeled as a network of spatially dislocated energy hubs, each with its own demand of electricity, heating and cooling energy. The model aims at defining the optimal mix of energy systems, thermal and electric energy storages and energy network infrastructures needed to satisfy the district’s users energy demands. The model is validated using energy demand data from the Nanyang Technological University campus in Singapore by analyzing three scenarios. In the first one, the optimization goal is purely economic and it aims at minimizing the overall cost of operating the district. The second and third scenarios focus on reducing the carbon footprint of the district by imposing an additional constraint, which limits the overall primary energy consumption. In all the scenarios the algorithm chooses to partially or totally connect the five sites with a district cooling network and take advantage of cold thermal storage, proving their potential in hot climates. In the first scenario, the advantages of the district cooling solution are mainly related to the savings in the capital cost of electric chillers that partially offset the cost of the district cooling network; indeed, district cooling network allows the sites to share cooling power thus achieving a reduction in chillers total installed size of 33%.

Suggested Citation

  • Comodi, Gabriele & Bartolini, Andrea & Carducci, Francesco & Nagaranjan, Balamurugan & Romagnoli, Alessandro, 2019. "Achieving low carbon local energy communities in hot climates by exploiting networks synergies in multi energy systems," Applied Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919315880
    DOI: 10.1016/j.apenergy.2019.113901
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919315880
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113901?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stadler, Michael & Cardoso, Gonçalo & Mashayekh, Salman & Forget, Thibault & DeForest, Nicholas & Agarwal, Ankit & Schönbein, Anna, 2016. "Value streams in microgrids: A literature review," Applied Energy, Elsevier, vol. 162(C), pages 980-989.
    2. Yang, Kun & Ding, Yan & Zhu, Neng & Yang, Fan & Wang, Qiaochu, 2018. "Multi-criteria integrated evaluation of distributed energy system for community energy planning based on improved grey incidence approach: A case study in Tianjin," Applied Energy, Elsevier, vol. 229(C), pages 352-363.
    3. Di Somma, M. & Yan, B. & Bianco, N. & Graditi, G. & Luh, P.B. & Mongibello, L. & Naso, V., 2017. "Multi-objective design optimization of distributed energy systems through cost and exergy assessments," Applied Energy, Elsevier, vol. 204(C), pages 1299-1316.
    4. Vesterlund, Mattias & Toffolo, Andrea & Dahl, Jan, 2017. "Optimization of multi-source complex district heating network, a case study," Energy, Elsevier, vol. 126(C), pages 53-63.
    5. Sachs, Julia & Sawodny, Oliver, 2016. "Multi-objective three stage design optimization for island microgrids," Applied Energy, Elsevier, vol. 165(C), pages 789-800.
    6. Roberts, Mike B. & Bruce, Anna & MacGill, Iain, 2019. "Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings," Applied Energy, Elsevier, vol. 245(C), pages 78-95.
    7. Yu, Nan & Kang, Jin-Su & Chang, Chung-Chuan & Lee, Tai-Yong & Lee, Dong-Yup, 2016. "Robust economic optimization and environmental policy analysis for microgrid planning: An application to Taichung Industrial Park, Taiwan," Energy, Elsevier, vol. 113(C), pages 671-682.
    8. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    9. Allegrini, Jonas & Orehounig, Kristina & Mavromatidis, Georgios & Ruesch, Florian & Dorer, Viktor & Evins, Ralph, 2015. "A review of modelling approaches and tools for the simulation of district-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1391-1404.
    10. Xu, Zhirong & Yang, Ping & Zheng, Chengli & Zhang, Yujia & Peng, Jiajun & Zeng, Zhiji, 2018. "Analysis on the organization and Development of multi-microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2204-2216.
    11. Bagheri, Mehdi & Delbari, Seyed Hamid & Pakzadmanesh, Mina & Kennedy, Christopher A., 2019. "City-integrated renewable energy design for low-carbon and climate-resilient communities," Applied Energy, Elsevier, vol. 239(C), pages 1212-1225.
    12. Moretti, Luca & Astolfi, Marco & Vergara, Claudio & Macchi, Ennio & Pérez-Arriaga, Josè Ignacio & Manzolini, Giampaolo, 2019. "A design and dispatch optimization algorithm based on mixed integer linear programming for rural electrification," Applied Energy, Elsevier, vol. 233, pages 1104-1121.
    13. Comodi, Gabriele & Rossi, Mosè, 2016. "Energy versus economic effectiveness in CHP (combined heat and power) applications: Investigation on the critical role of commodities price, taxation and power grid mix efficiency," Energy, Elsevier, vol. 109(C), pages 124-136.
    14. Tan, Sieting & Yang, Jin & Yan, Jinyue & Lee, Chewtin & Hashim, Haslenda & Chen, Bin, 2017. "A holistic low carbon city indicator framework for sustainable development," Applied Energy, Elsevier, vol. 185(P2), pages 1919-1930.
    15. Comodi, Gabriele & Giantomassi, Andrea & Severini, Marco & Squartini, Stefano & Ferracuti, Francesco & Fonti, Alessandro & Nardi Cesarini, Davide & Morodo, Matteo & Polonara, Fabio, 2015. "Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies," Applied Energy, Elsevier, vol. 137(C), pages 854-866.
    16. Weber, C. & Shah, N., 2011. "Optimisation based design of a district energy system for an eco-town in the United Kingdom," Energy, Elsevier, vol. 36(2), pages 1292-1308.
    17. Li, Mengyu & Zhang, Xiongwen & Li, Guojun & Jiang, Chaoyang, 2016. "A feasibility study of microgrids for reducing energy use and GHG emissions in an industrial application," Applied Energy, Elsevier, vol. 176(C), pages 138-148.
    18. Zenginis, Ioannis & Vardakas, John S. & Echave, Cynthia & Morató, Moisés & Abadal, Jordi & Verikoukis, Christos V., 2017. "Cooperation in microgrids through power exchange: An optimal sizing and operation approach," Applied Energy, Elsevier, vol. 203(C), pages 972-981.
    19. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    20. Liu, Xuezhi & Yan, Zheng & Wu, Jianzhong, 2019. "Optimal coordinated operation of a multi-energy community considering interactions between energy storage and conversion devices," Applied Energy, Elsevier, vol. 248(C), pages 256-273.
    21. Mehleri, Eugenia D. & Sarimveis, Haralambos & Markatos, Nikolaos C. & Papageorgiou, Lazaros G., 2012. "A mathematical programming approach for optimal design of distributed energy systems at the neighbourhood level," Energy, Elsevier, vol. 44(1), pages 96-104.
    22. Renaldi, Renaldi & Friedrich, Daniel, 2019. "Techno-economic analysis of a solar district heating system with seasonal thermal storage in the UK," Applied Energy, Elsevier, vol. 236(C), pages 388-400.
    23. Jana, Kuntal & Ray, Avishek & Majoumerd, Mohammad Mansouri & Assadi, Mohsen & De, Sudipta, 2017. "Polygeneration as a future sustainable energy solution – A comprehensive review," Applied Energy, Elsevier, vol. 202(C), pages 88-111.
    24. Liu, Xuezhi & Mancarella, Pierluigi, 2016. "Modelling, assessment and Sankey diagrams of integrated electricity-heat-gas networks in multi-vector district energy systems," Applied Energy, Elsevier, vol. 167(C), pages 336-352.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng Niu & Xiangjun Li & Chen Sun & Xiaoqing Xiu & Yue Wang & Mingyue Hu & Haitao Dong, 2023. "Operation Optimization of Wind/Battery Storage/Alkaline Electrolyzer System Considering Dynamic Hydrogen Production Efficiency," Energies, MDPI, vol. 16(17), pages 1-20, August.
    2. Gheorghe Dumitrașcu & Michel Feidt & Ştefan Grigorean, 2021. "Finite Physical Dimensions Thermodynamics Analysis and Design of Closed Irreversible Cycles," Energies, MDPI, vol. 14(12), pages 1-19, June.
    3. Alabi, Tobi Michael & Aghimien, Emmanuel I. & Agbajor, Favour D. & Yang, Zaiyue & Lu, Lin & Adeoye, Adebusola R. & Gopaluni, Bhushan, 2022. "A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems," Renewable Energy, Elsevier, vol. 194(C), pages 822-849.
    4. Petkov, Ivalin & Gabrielli, Paolo & Spokaite, Marija, 2021. "The impact of urban district composition on storage technology reliance: trade-offs between thermal storage, batteries, and power-to-hydrogen," Energy, Elsevier, vol. 224(C).
    5. Alabi, Tobi Michael & Lu, Lin & Yang, Zaiyue, 2021. "Stochastic optimal planning scheme of a zero-carbon multi-energy system (ZC-MES) considering the uncertainties of individual energy demand and renewable resources: An integrated chance-constrained and," Energy, Elsevier, vol. 232(C).
    6. Christina Papadimitriou & Marialaura Di Somma & Chrysanthos Charalambous & Martina Caliano & Valeria Palladino & Andrés Felipe Cortés Borray & Amaia González-Garrido & Nerea Ruiz & Giorgio Graditi, 2023. "A Comprehensive Review of the Design and Operation Optimization of Energy Hubs and Their Interaction with the Markets and External Networks," Energies, MDPI, vol. 16(10), pages 1-46, May.
    7. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2022. "A review on the integration and optimization of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).
    9. Liu, Zuming & Zhao, Yingru & Wang, Xiaonan, 2020. "Long-term economic planning of combined cooling heating and power systems considering energy storage and demand response," Applied Energy, Elsevier, vol. 279(C).
    10. Junchao Cheng & Yongyi Huang & Hongjing He & Abdul Matin Ibrahimi & Tomonobu Senjyu, 2023. "Optimal Operation of CCHP System Combined Electric Vehicles Considering Seasons," Energies, MDPI, vol. 16(10), pages 1-21, May.
    11. Liu, Zhijian & Li, Ying & Fan, Guangyao & Wu, Di & Guo, Jiacheng & Jin, Guangya & Zhang, Shicong & Yang, Xinyan, 2022. "Co-optimization of a novel distributed energy system integrated with hybrid energy storage in different nearly zero energy community scenarios," Energy, Elsevier, vol. 247(C).
    12. Rosato, Antonello & Panella, Massimo & Andreotti, Amedeo & Mohammed, Osama A. & Araneo, Rodolfo, 2021. "Two-stage dynamic management in energy communities using a decision system based on elastic net regularization," Applied Energy, Elsevier, vol. 291(C).
    13. Jalil-Vega, Francisca & García Kerdan, Iván & Hawkes, Adam D., 2020. "Spatially-resolved urban energy systems model to study decarbonisation pathways for energy services in cities," Applied Energy, Elsevier, vol. 262(C).
    14. Gržanić, M. & Capuder, T. & Zhang, N. & Huang, W., 2022. "Prosumers as active market participants: A systematic review of evolution of opportunities, models and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    15. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Georghiou, George E., 2021. "Social arrangements, technical designs and impacts of energy communities: A review," Renewable Energy, Elsevier, vol. 169(C), pages 1138-1156.
    16. Mavromatidis, Georgios & Petkov, Ivalin, 2021. "MANGO: A novel optimization model for the long-term, multi-stage planning of decentralized multi-energy systems," Applied Energy, Elsevier, vol. 288(C).
    17. Bartolini, Andrea & Mazzoni, Stefano & Comodi, Gabriele & Romagnoli, Alessandro, 2021. "Impact of carbon pricing on distributed energy systems planning," Applied Energy, Elsevier, vol. 301(C).
    18. Wu, Di & Han, Zhonghe & Liu, Zhijian & Li, Peng & Ma, Fanfan & Zhang, Han & Yin, Yunxing & Yang, Xinyan, 2021. "Comparative study of optimization method and optimal operation strategy for multi-scenario integrated energy system," Energy, Elsevier, vol. 217(C).
    19. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    20. Bartolucci, L. & Cordiner, S. & Mulone, V. & Pasquale, S. & Sbarra, A., 2022. "Design and management strategies for low emission building-scale Multi Energy Systems," Energy, Elsevier, vol. 239(PB).
    21. La Fata, Alice & Brignone, Massimo & Procopio, Renato & Bracco, Stefano & Delfino, Federico & Barilli, Riccardo & Ravasi, Martina & Zanellini, Fabio, 2022. "An efficient Energy Management System for long term planning and real time scheduling of flexible polygeneration systems," Renewable Energy, Elsevier, vol. 200(C), pages 1180-1201.
    22. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2021. "Energy equipment sizing and operation optimisation for prosumer industrial SMEs – A lifetime approach," Applied Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Peiguang & Zhang, Zhaoyan & Fu, Lei & Ran, Ning, 2021. "Optimal design of home energy management strategy based on refined load model," Energy, Elsevier, vol. 218(C).
    2. Bartolini, Andrea & Comodi, Gabriele & Salvi, Danilo & Østergaard, Poul Alberg, 2020. "Renewables self-consumption potential in districts with high penetration of electric vehicles," Energy, Elsevier, vol. 213(C).
    3. Clarke, Fiona & Dorneanu, Bogdan & Mechleri, Evgenia & Arellano-Garcia, Harvey, 2021. "Optimal design of heating and cooling pipeline networks for residential distributed energy resource systems," Energy, Elsevier, vol. 235(C).
    4. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    5. Marquant, Julien F. & Evins, Ralph & Bollinger, L. Andrew & Carmeliet, Jan, 2017. "A holarchic approach for multi-scale distributed energy system optimisation," Applied Energy, Elsevier, vol. 208(C), pages 935-953.
    6. Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
    7. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    8. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Georghiou, George E., 2021. "Social arrangements, technical designs and impacts of energy communities: A review," Renewable Energy, Elsevier, vol. 169(C), pages 1138-1156.
    9. Zenginis, Ioannis & Vardakas, John S. & Echave, Cynthia & Morató, Moisés & Abadal, Jordi & Verikoukis, Christos V., 2017. "Cooperation in microgrids through power exchange: An optimal sizing and operation approach," Applied Energy, Elsevier, vol. 203(C), pages 972-981.
    10. Mashayekh, Salman & Stadler, Michael & Cardoso, Gonçalo & Heleno, Miguel, 2017. "A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids," Applied Energy, Elsevier, vol. 187(C), pages 154-168.
    11. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    12. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    13. Bartolini, Andrea & Mazzoni, Stefano & Comodi, Gabriele & Romagnoli, Alessandro, 2021. "Impact of carbon pricing on distributed energy systems planning," Applied Energy, Elsevier, vol. 301(C).
    14. Wakui, Tetsuya & Hashiguchi, Moe & Sawada, Kento & Yokoyama, Ryohei, 2019. "Two-stage design optimization based on artificial immune system and mixed-integer linear programming for energy supply networks," Energy, Elsevier, vol. 170(C), pages 1228-1248.
    15. Zhang, Zhaoyan & Wang, Peiguang & Jiang, Ping & Liu, Zhiheng & Fu, Lei, 2022. "Energy management of ultra-short-term optimal scheduling of integrated energy system considering the characteristics of heating network," Energy, Elsevier, vol. 240(C).
    16. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Weng, Peifen & Ren, Jianxing, 2018. "Coupling optimization of urban spatial structure and neighborhood-scale distributed energy systems," Energy, Elsevier, vol. 144(C), pages 472-481.
    17. Brodnicke, Linda & Gabrielli, Paolo & Sansavini, Giovanni, 2023. "Impact of policies on residential multi-energy systems for consumers and prosumers," Applied Energy, Elsevier, vol. 344(C).
    18. Zhibin Liu & Feng Guo & Jiaqi Liu & Xinyan Lin & Ao Li & Zhaoyan Zhang & Zhiheng Liu, 2023. "A Compound Coordinated Optimal Operation Strategy of Day-Ahead-Rolling-Realtime in Integrated Energy System," Energies, MDPI, vol. 16(1), pages 1-19, January.
    19. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2016. "Optimising urban energy systems: Simultaneous system sizing, operation and district heating network layout," Energy, Elsevier, vol. 116(P1), pages 619-636.
    20. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919315880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.