IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipcs0306261924019287.html
   My bibliography  Save this article

Unlocking the potential of electric and hybrid tractors via sensitivity and techno-economic analysis

Author

Listed:
  • Ali, Dilawer
  • de Castro, Ricardo
  • Ehsani, Reza
  • Vougioukas, Stavros
  • Wei, Peng

Abstract

The majority of agricultural vehicles in use today still rely on diesel-based propulsion, a major source of air pollution. Electrification is seen as a potential solution for decarbonizing these off-road vehicles but is hampered by higher upfront costs in energy storage and charging infrastructure. To better quantify these barriers, this paper proposes a techno-economic tool that can assist farmers in evaluating the total costs of ownership of electric and hybrid tractors. A pragmatic simulation model of the tractor is developed to predict the annual energy/fuel consumption and NOx emissions, while an economic model estimates the total acquisition, operation, and maintenance costs. For managing the energy in hybrid tractors, a new power split strategy based on model predictive control is developed, allowing the designer to balance energy efficiency and NOx emissions, while taking into account operational constraints of the electric powertrain. Additionally, we propose novel decision maps that allow farmers to quickly identify operating regions (in term of average load and yearly working time) where the deployment of electric/hybrid tractors is economically viable. To account for variability in the tractor’s operational conditions, we conduct both a deterministic sensitivity analysis with multi-parameter variation and a stochastic analysis of the total cost of ownership. The tool is validated with different mission profiles based on data from a California farm. The results show that, compared to diesel powertrains, electric tractors are more cost-effective for light-duty farming activities (engine loads less than 20%). On the other hand, hybrid powertrains are more economical for medium-duty tasks, where engine loads range from 20% to 60%.

Suggested Citation

  • Ali, Dilawer & de Castro, Ricardo & Ehsani, Reza & Vougioukas, Stavros & Wei, Peng, 2025. "Unlocking the potential of electric and hybrid tractors via sensitivity and techno-economic analysis," Applied Energy, Elsevier, vol. 377(PC).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019287
    DOI: 10.1016/j.apenergy.2024.124545
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924019287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markus Lips, 2017. "Length of Operational Life and Its Impact on Life-Cycle Costs of a Tractor in Switzerland," Agriculture, MDPI, vol. 7(8), pages 1-9, August.
    2. Olkkonen, Ville & Lind, Arne & Rosenberg, Eva & Kvalbein, Lisa, 2023. "Electrification of the agricultural sector in Norway in an effort to phase out fossil fuel consumption," Energy, Elsevier, vol. 276(C).
    3. Vu, Ngoc-Lam & Messier, Pascal & Nguyễn, Bảo-Huy & Vo-Duy, Thanh & Trovão, João Pedro F. & Desrochers, Alain & Rodrigues, António, 2023. "Energy-optimization design and management strategy for hybrid electric non-road mobile machinery: A case study of snowblower," Energy, Elsevier, vol. 284(C).
    4. Rahman, Md Momtazur & Khan, Imran & Field, David Luke & Techato, Kuaanan & Alameh, Kamal, 2022. "Powering agriculture: Present status, future potential, and challenges of renewable energy applications," Renewable Energy, Elsevier, vol. 188(C), pages 731-749.
    5. Anatole Desreveaux & Eric Hittinger & Alain Bouscayrol & Elodie Castex & Gabriel Mihai Sirbu, 2020. "Techno-Economic Comparison of Total Cost of Ownership of Electric and Diesel Vehicles," Post-Print halshs-03182182, HAL.
    6. Zheng, Fangdan & Xing, Yinjiao & Jiang, Jiuchun & Sun, Bingxiang & Kim, Jonghoon & Pecht, Michael, 2016. "Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 183(C), pages 513-525.
    7. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2021. "Sustainable Supply Chains with Blockchain, IoT and RFID: A Simulation on Order Management," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    2. Wei, Jingwen & Chen, Chunlin, 2021. "A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries," Energy, Elsevier, vol. 229(C).
    3. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    4. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    5. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    6. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    7. F. Wang & G. H. Huang & Y. Fan & Y. P. Li, 2020. "Robust Subsampling ANOVA Methods for Sensitivity Analysis of Water Resource and Environmental Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3199-3217, August.
    8. Regmi, Rupesh & Zhang, Zhuo & Zhang, Hongpeng, 2023. "Entrepreneurship strategy, natural resources management and sustainable performance: A study of an emerging market," Resources Policy, Elsevier, vol. 86(PB).
    9. Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019. "Uncertainty quantification and global sensitivity analysis for economic models," Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.
    10. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    11. Tobias Fissler & Silvana M. Pesenti, 2022. "Sensitivity Measures Based on Scoring Functions," Papers 2203.00460, arXiv.org, revised Jul 2022.
    12. Xu Lei & Xi Zhao & Guiping Wang & Weiyu Liu, 2019. "A Novel Temperature–Hysteresis Model for Power Battery of Electric Vehicles with an Adaptive Joint Estimator on State of Charge and Power," Energies, MDPI, vol. 12(19), pages 1-24, September.
    13. Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    14. Magni, Carlo Alberto, 2016. "Capital depreciation and the underdetermination of rate of return: A unifying perspective," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 54-79.
    15. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    16. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2020. "Global Sensitivity and Domain-Selective Testing for Functional-Valued Responses: An Application to Climate Economy Models," Papers 2006.13850, arXiv.org, revised Apr 2024.
    17. Stefano Cucurachi & Carlos Felipe Blanco & Bernhard Steubing & Reinout Heijungs, 2022. "Implementation of uncertainty analysis and moment‐independent global sensitivity analysis for full‐scale life cycle assessment models," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 374-391, April.
    18. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    19. Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
    20. A. G. Olabi & Khaled Obaideen & Mohammad Ali Abdelkareem & Maryam Nooman AlMallahi & Nabila Shehata & Abdul Hai Alami & Ayman Mdallal & Asma Ali Murah Hassan & Enas Taha Sayed, 2023. "Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array," Sustainability, MDPI, vol. 15(5), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.