IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipbs030626192401883x.html
   My bibliography  Save this article

Are larger or denser cities more emission efficient? Exploring the nexus between urban household carbon emission, population size and density

Author

Listed:
  • Kumar, Santosh
  • Sen, Roshmi

Abstract

Considering the high impact of urbanization on climate change, it is pertinent to explore the nexus between household carbon emissions (HCEs), urban population size and population density in Indian cities so as to test whether larger or denser cities are carbon emission efficient. In this study, the statistical significance and variations of mean per capita HCEs are evaluated across six classes of Indian cities classified on the basis of population size and, five classes based on population density by conducting analysis of variance followed by post-hoc test. The results clearly demonstrate that larger or denser cities are not emission efficient. In addition to that, by revisiting scaling laws, it is analytically deducted that for a city to qualify for exhibiting simultaneous emission efficiency in relation to population size and density, population size exponent (α) must lie between 0 and 0.5 and the value of density exponent (β) must be greater than α and lower than unity. By quantifying, comparing and tracking carbon emission efficiencies of cities based on population size and density parameters, the findings of this study potentially provide new insights to policy makers towards approaching the highly ambitious decarbonization goals stated in India's Panchamrit commitment, 2070.

Suggested Citation

  • Kumar, Santosh & Sen, Roshmi, 2025. "Are larger or denser cities more emission efficient? Exploring the nexus between urban household carbon emission, population size and density," Applied Energy, Elsevier, vol. 377(PB).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pb:s030626192401883x
    DOI: 10.1016/j.apenergy.2024.124500
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192401883X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michail Fragkias & José Lobo & Deborah Strumsky & Karen C Seto, 2013. "Does Size Matter? Scaling of CO2 Emissions and U.S. Urban Areas," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    2. Thomas Longden, 2015. "CO2 Intensity and the Importance of Country Level Differences: An Analysis of the Relationship Between per Capita Emissions and Population Density," Working Papers 2015.47, Fondazione Eni Enrico Mattei.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Deng & Qingquan Liang & Shuai Yan & Xiaodan Shen & Lan Yi, 2024. "Heterogeneity Analysis of Regional Greenhouse Gas Driving Effects: An Empirical Study from Southeast Asian Countries," Energies, MDPI, vol. 17(23), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Can & Wang, Zhen & Cai, Bofeng & Peng, Sha & Wang, Yang & Xu, Chengdong, 2021. "Evolution-based CO2 emission baseline scenarios of Chinese cities in 2025," Applied Energy, Elsevier, vol. 281(C).
    2. Nicholas Z Muller & Akshaya Jha, 2017. "Does environmental policy affect scaling laws between population and pollution? Evidence from American metropolitan areas," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-15, August.
    3. Huang, Liqiao & Long, Yin & Chen, Jundong & Yoshida, Yoshikuni, 2023. "Sustainable lifestyle: Urban household carbon footprint accounting and policy implications for lifestyle-based decarbonization," Energy Policy, Elsevier, vol. 181(C).
    4. Muhammad Uzair Ali & Zhimin Gong & Muhammad Ubaid Ali & Fahad Asmi & Rizwanullah Muhammad, 2022. "CO2 emission, economic development, fossil fuel consumption and population density in India, Pakistan and Bangladesh: A panel investigation," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 18-31, January.
    5. Liu, Xingjian & Wang, Mingshu & Qiang, Wei & Wu, Kang & Wang, Xiaomi, 2020. "Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions," Applied Energy, Elsevier, vol. 261(C).
    6. Joao Meirelles & Camilo Rodrigues Neto & Fernando Fagundes Ferreira & Fabiano Lemes Ribeiro & Claudia Rebeca Binder, 2018. "Evolution of urban scaling: Evidence from Brazil," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-15, October.
    7. Chen, Shaoqing & Chen, Bin, 2017. "Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling," Applied Energy, Elsevier, vol. 194(C), pages 774-783.
    8. Ahlfeldt, Gabriel M. & Pietrostefani, Elisabetta, 2019. "The economic effects of density: A synthesis," Journal of Urban Economics, Elsevier, vol. 111(C), pages 93-107.
    9. Peter Marcotullio & Andrea Sarzynski & Jochen Albrecht & Niels Schulz & Jake Garcia, 2013. "The geography of global urban greenhouse gas emissions: an exploratory analysis," Climatic Change, Springer, vol. 121(4), pages 621-634, December.
    10. Rainald Borck & Takatoshi Tabuchi, 2019. "Pollution and city size: can cities be too small?," Journal of Economic Geography, Oxford University Press, vol. 19(5), pages 995-1020.
    11. Miomir Jovanović & Ljiljana Kašćelan & Aleksandra Despotović & Vladimir Kašćelan, 2015. "The Impact of Agro-Economic Factors on GHG Emissions: Evidence from European Developing and Advanced Economies," Sustainability, MDPI, vol. 7(12), pages 1-21, December.
    12. Franciszek Chwałczyk, 2020. "Around the Anthropocene in Eighty Names—Considering the Urbanocene Proposition," Sustainability, MDPI, vol. 12(11), pages 1-33, May.
    13. Carozzi, Felipe & Roth, Sefi, 2019. "Dirty density: air quality and the density of American cities," LSE Research Online Documents on Economics 103393, London School of Economics and Political Science, LSE Library.
    14. Agustina Apud & Robert Faggian & Victor Sposito & Diego Martino, 2020. "Suitability Analysis and Planning of Green Infrastructure in Montevideo, Uruguay," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    15. Carozzi, Felipe & Roth, Sefi, 2020. "Dirty Density: Air Quality and the Density of American Cities," IZA Discussion Papers 13191, Institute of Labor Economics (IZA).
    16. Niu, Honglei & Lekse, William, 2018. "Carbon emission effect of urbanization at regional level: Empirical evidence from China," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-31.
    17. Qiao, Renlu & Wu, Zhiqiang & Jiang, Qingrui & Liu, Xiaochang & Gao, Shuo & Xia, Li & Yang, Tianren, 2024. "The nonlinear influence of land conveyance on urban carbon emissions: An interpretable ensemble learning-based approach," Land Use Policy, Elsevier, vol. 140(C).
    18. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    19. Michail Fragkias & José Lobo & Karen C Seto, 2017. "A comparison of nighttime lights data for urban energy research: Insights from scaling analysis in the US system of cities," Environment and Planning B, , vol. 44(6), pages 1077-1096, November.
    20. Andrew Jorgenson & Daniel Auerbach & Brett Clark, 2014. "The (De-) carbonization of urbanization, 1960–2010," Climatic Change, Springer, vol. 127(3), pages 561-575, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pb:s030626192401883x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.