IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipas0306261924017112.html
   My bibliography  Save this article

Safe deep reinforcement learning for building energy management

Author

Listed:
  • Wang, Xiangwei
  • Wang, Peng
  • Huang, Renke
  • Zhu, Xiuli
  • Arroyo, Javier
  • Li, Ning

Abstract

The optimization of building energy systems poses a complex challenge due to the dynamic nature of building environments and the need for ensuring both energy efficiency and system reliability. This paper proposes a novel approach that synergizes deep reinforcement learning (DRL) with model predictive control (MPC) for safe and efficient building energy management. The approach, named safe DRL, leverages the DRL to explore optimality in uncertain environments and the MPC to dynamically ensure constraints. Off-the-shelf DRL tools are utilized in the safe DRL approach which avoids case-by-case and effort-intensive hyperparameter tuning. MPC with only an approximate building model is then adopted to efficiently filter the DRL action candidates to ensure the safety of the constraints. Additionally, a comprehensive safety metric is proposed considering the duration and severity of constraint violation. Extensive case studies with high-fidelity building models show that the safe DRL approach significantly enhances the constraint satisfaction and improves building performance at the cost of slightly more decision time of a few seconds.

Suggested Citation

  • Wang, Xiangwei & Wang, Peng & Huang, Renke & Zhu, Xiuli & Arroyo, Javier & Li, Ning, 2025. "Safe deep reinforcement learning for building energy management," Applied Energy, Elsevier, vol. 377(PA).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017112
    DOI: 10.1016/j.apenergy.2024.124328
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924017112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124328?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paesschesoone, Siebe & Kayedpour, Nezmin & Manna, Carlo & Crevecoeur, Guillaume, 2024. "Reinforcement learning for an enhanced energy flexibility controller incorporating predictive safety filter and adaptive policy updates," Applied Energy, Elsevier, vol. 368(C).
    2. Wang, Zhe & Hong, Tianzhen, 2020. "Reinforcement learning for building controls: The opportunities and challenges," Applied Energy, Elsevier, vol. 269(C).
    3. Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2020. "Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization," Applied Energy, Elsevier, vol. 271(C).
    4. Li, Wenzhuo & Wang, Shengwei, 2020. "A multi-agent based distributed approach for optimal control of multi-zone ventilation systems considering indoor air quality and energy use," Applied Energy, Elsevier, vol. 275(C).
    5. Ruixin Lv & Zhongyuan Yuan & Bo Lei & Jiacheng Zheng & Xiujing Luo, 2021. "Model Predictive Control with Adaptive Building Model for Heating Using the Hybrid Air-Conditioning System in a Railway Station," Energies, MDPI, vol. 14(7), pages 1-22, April.
    6. Arroyo, Javier & Manna, Carlo & Spiessens, Fred & Helsen, Lieve, 2022. "Reinforced model predictive control (RL-MPC) for building energy management," Applied Energy, Elsevier, vol. 309(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lefeng Cheng & Pengrong Huang & Mengya Zhang & Ru Yang & Yafei Wang, 2025. "Optimizing Electricity Markets Through Game-Theoretical Methods: Strategic and Policy Implications for Power Purchasing and Generation Enterprises," Mathematics, MDPI, vol. 13(3), pages 1-90, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xuezheng & Dong, Bing, 2024. "Long-term experimental evaluation and comparison of advanced controls for HVAC systems," Applied Energy, Elsevier, vol. 371(C).
    2. Nweye, Kingsley & Sankaranarayanan, Siva & Nagy, Zoltan, 2023. "MERLIN: Multi-agent offline and transfer learning for occupant-centric operation of grid-interactive communities," Applied Energy, Elsevier, vol. 346(C).
    3. Zhou, Xinlei & Xue, Shan & Du, Han & Ma, Zhenjun, 2023. "Optimization of building demand flexibility using reinforcement learning and rule-based expert systems," Applied Energy, Elsevier, vol. 350(C).
    4. Cui, Can & Xue, Jing, 2024. "Energy and comfort aware operation of multi-zone HVAC system through preference-inspired deep reinforcement learning," Energy, Elsevier, vol. 292(C).
    5. Zheng, Wanfu & Wang, Dan & Wang, Zhe, 2024. "Economic model predictive control for building HVAC system: A comparative analysis of model-based and data-driven approaches using the BOPTEST Framework," Applied Energy, Elsevier, vol. 374(C).
    6. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    7. Ayas Shaqour & Aya Hagishima, 2022. "Systematic Review on Deep Reinforcement Learning-Based Energy Management for Different Building Types," Energies, MDPI, vol. 15(22), pages 1-27, November.
    8. Gao, Yuan & Matsunami, Yuki & Miyata, Shohei & Akashi, Yasunori, 2022. "Multi-agent reinforcement learning dealing with hybrid action spaces: A case study for off-grid oriented renewable building energy system," Applied Energy, Elsevier, vol. 326(C).
    9. Lei, Yue & Zhan, Sicheng & Ono, Eikichi & Peng, Yuzhen & Zhang, Zhiang & Hasama, Takamasa & Chong, Adrian, 2022. "A practical deep reinforcement learning framework for multivariate occupant-centric control in buildings," Applied Energy, Elsevier, vol. 324(C).
    10. Jian Tang & Hao Tian & Tianzheng Wang, 2024. "A Review of Model Predictive Control for the Municipal Solid Waste Incineration Process," Sustainability, MDPI, vol. 16(17), pages 1-35, September.
    11. Mpho J. Lencwe & SP Daniel Chowdhury & Sipho Mahlangu & Maxwell Sibanyoni & Louwrance Ngoma, 2021. "An Efficient HVAC Network Control for Safety Enhancement of a Typical Uninterrupted Power Supply Battery Storage Room," Energies, MDPI, vol. 14(16), pages 1-23, August.
    12. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    13. Liu, Xiaoqi & Lee, Seungjae & Bilionis, Ilias & Karava, Panagiota & Joe, Jaewan & Sadeghi, Seyed Amir, 2021. "A user-interactive system for smart thermal environment control in office buildings," Applied Energy, Elsevier, vol. 298(C).
    14. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    15. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    16. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    17. Davide Coraci & Silvio Brandi & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Online Implementation of a Soft Actor-Critic Agent to Enhance Indoor Temperature Control and Energy Efficiency in Buildings," Energies, MDPI, vol. 14(4), pages 1-26, February.
    18. Liu, Mingzhe & Guo, Mingyue & Fu, Yangyang & O’Neill, Zheng & Gao, Yuan, 2024. "Expert-guided imitation learning for energy management: Evaluating GAIL’s performance in building control applications," Applied Energy, Elsevier, vol. 372(C).
    19. Langer, Lissy & Volling, Thomas, 2022. "A reinforcement learning approach to home energy management for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 327(C).
    20. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.