IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipas0306261924013412.html
   My bibliography  Save this article

Research on reducing pollutant, improving efficiency and enhancing running safety for 1000 MW coal-fired boiler based on data-driven evolutionary optimization and online retrieval method

Author

Listed:
  • Xu, Wentao
  • Poh, Kimleng
  • Song, Siheng
  • Huang, Yaji

Abstract

This article adopts data-driven evolutionary optimization and online retrieval method to generate the boiler online combustion decisions and improve the boiler working performance. Improved sparrow search algorithm-based least squares support vector machine (ISSA-LSSVM) is utilized to develop the boiler's static mathematical model with self-adaptive capability under steady-load operating condition at first. And then improved sparrow search algorithm and long short-term memory neural networks (ISSA-LSTM) are combined to construct the dynamical combustion model for the boiler with self-adaptive capability under variable-load running condition. Whereafter, improved strength pareto evolutionary algorithm-II (ISPEA-II), future dynamic time-steps prediction models (FDTSP) and Bollinger Band-based safety assessment technique (BBSAT) are applied to obtain a number of combustion decisions owning better working state, higher economy and lower pollutant discharge offline. At last, safety assessment, mutation operation and the determination principle of the unique similarity case are introduced to the online retrieval method to generate the boiler combustion decisions in time. To illustrate the usability of proposed online optimization approach, several different on-line combustion optimization methods are applied in a practical online optimization process. The results indicated that based on proposed optimization method, the boiler thermal efficiency was improved by 0.210% and the NOx emission was reduced by 32.132 mg/m3 and the Bollinger Band, reflecting the fluctuation characteristic of wall temperature, was reduced from 32.685 to 10.249, simultaneously. Consequently, proposed on-line combustion optimization method of boiler is effective and it can realize the on-line combustion optimization of boiler.

Suggested Citation

  • Xu, Wentao & Poh, Kimleng & Song, Siheng & Huang, Yaji, 2025. "Research on reducing pollutant, improving efficiency and enhancing running safety for 1000 MW coal-fired boiler based on data-driven evolutionary optimization and online retrieval method," Applied Energy, Elsevier, vol. 377(PA).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924013412
    DOI: 10.1016/j.apenergy.2024.123958
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924013412
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123958?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924013412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.