IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipas0306261924015241.html
   My bibliography  Save this article

Efficient demand response location targeting for price spike mitigation by exploiting price-demand relationship

Author

Listed:
  • Zhang, Yufan
  • Wen, Honglin
  • Feng, Tao
  • Chen, Yize

Abstract

Demand response (DR) leverages demand-side flexibility, offering a promising approach to enhance market conditions like mitigating wholesale price spikes. However, poorly chosen DR locations can inadvertently increase electricity prices. For that, we introduce a method to rigorously select DR locations and corresponding demand reductions. We formulate a bilevel program where the upper level determines the DR locations and demand reductions while ensuring the average nodal prices meet a predetermined target. The lower level tackles an economic dispatch (ED) problem and feeds the resulting nodal prices back to the upper level based on post-DR demands. This bilevel formulation presents challenges due to the lower-level non-convexity affecting the upper-level constraints on average nodal prices. To address this, we propose to replace the lower level with a piecewise linear function representing the price-demand relationship, solving iteratively for each linear segment. This results in a tractable mixed-integer linear program. An acceleration strategy is proposed to further reduce the computation time. Numerical studies demonstrate the ability of the proposed approach to reduce prices to a desired level. Besides, we empirically show that the proposed approach is robust against inaccurate system parameters and can reduce computation time by over 50%.

Suggested Citation

  • Zhang, Yufan & Wen, Honglin & Feng, Tao & Chen, Yize, 2024. "Efficient demand response location targeting for price spike mitigation by exploiting price-demand relationship," Applied Energy, Elsevier, vol. 376(PA).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924015241
    DOI: 10.1016/j.apenergy.2024.124141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924015241
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doering, Kenji & Sendelbach, Luke & Steinschneider, Scott & Lindsay Anderson, C., 2021. "The effects of wind generation and other market determinants on price spikes," Applied Energy, Elsevier, vol. 300(C).
    2. de Souza Dutra, Michael David & Alguacil, Natalia, 2020. "Optimal residential users coordination via demand response: An exact distributed framework," Applied Energy, Elsevier, vol. 279(C).
    3. Vivek Dua & Efstratios Pistikopoulos, 2000. "An Algorithm for the Solution of Multiparametric Mixed Integer Linear Programming Problems," Annals of Operations Research, Springer, vol. 99(1), pages 123-139, December.
    4. Su, Yufei & Kern, Jordan D. & Reed, Patrick M. & Characklis, Gregory W., 2020. "Compound hydrometeorological extremes across multiple timescales drive volatility in California electricity market prices and emissions," Applied Energy, Elsevier, vol. 276(C).
    5. Mari, Carlo, 2014. "Hedging electricity price volatility using nuclear power," Applied Energy, Elsevier, vol. 113(C), pages 615-621.
    6. Zareipour, Hamidreza & Bhattacharya, Kankar & Canizares, Claudio A., 2007. "Electricity market price volatility: The case of Ontario," Energy Policy, Elsevier, vol. 35(9), pages 4739-4748, September.
    7. Davarzani, Sima & Granell, Ramon & Taylor, Gareth A. & Pisica, Ioana, 2019. "Implementation of a novel multi-agent system for demand response management in low-voltage distribution networks," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Mulhall, Rachel Ann & Bryson, John R., 2014. "Energy price risk and the sustainability of demand side supply chains," Applied Energy, Elsevier, vol. 123(C), pages 327-334.
    9. Han, Rushuai & Hu, Qinran & Cui, Hantao & Chen, Tao & Quan, Xiangjun & Wu, Zaijun, 2022. "An optimal bidding and scheduling method for load service entities considering demand response uncertainty," Applied Energy, Elsevier, vol. 328(C).
    10. Sirin, Selahattin Murat & Camadan, Ercument & Erten, Ibrahim Etem & Zhang, Alex Hongliang, 2023. "Market failure or politics? Understanding the motives behind regulatory actions to address surging electricity prices," Energy Policy, Elsevier, vol. 180(C).
    11. Stawska, Anna & Romero, Natalia & de Weerdt, Mathijs & Verzijlbergh, Remco, 2021. "Demand response: For congestion management or for grid balancing?," Energy Policy, Elsevier, vol. 148(PA).
    12. Nizami, M.S.H. & Hossain, M.J. & Amin, B.M. Ruhul & Fernandez, Edstan, 2020. "A residential energy management system with bi-level optimization-based bidding strategy for day-ahead bi-directional electricity trading," Applied Energy, Elsevier, vol. 261(C).
    13. Nolan, Sheila & O’Malley, Mark, 2015. "Challenges and barriers to demand response deployment and evaluation," Applied Energy, Elsevier, vol. 152(C), pages 1-10.
    14. Lin, Jianing & Bao, Minglei & Liang, Ziyang & Sang, Maosheng & Ding, Yi, 2022. "Spatio-temporal evaluation of electricity price risk considering multiple uncertainties under extreme cold weather," Applied Energy, Elsevier, vol. 328(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    2. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    3. Gwang Goo Lee & Sung-Won Ham, 2023. "Prediction of Carbon Price in EU-ETS Using a Geometric Brownian Motion Model and Its Application to Analyze the Economic Competitiveness of Carbon Capture and Storage," Energies, MDPI, vol. 16(17), pages 1-13, August.
    4. Jeddi, Babak & Mishra, Yateendra & Ledwich, Gerard, 2021. "Distributed load scheduling in residential neighborhoods for coordinated operation of multiple home energy management systems," Applied Energy, Elsevier, vol. 300(C).
    5. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    6. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    7. Pang, Simian & Xu, Qingshan & Yang, Yongbiao & Cheng, Aoxue & Shi, Zhengkun & Shi, Yun, 2024. "Robust decomposition and tracking strategy for demand response enhanced virtual power plants," Applied Energy, Elsevier, vol. 373(C).
    8. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    9. Cédric Clastres & Olivier Rebenaque & Patrick Jochem, 2020. "Provision of Demand Response from the prosumers in multiple markets," Working Papers hal-03167446, HAL.
    10. Javed, Muhammad Shahzad & Jurasz, Jakub & McPherson, Madeleine & Dai, Yanjun & Ma, Tao, 2022. "Quantitative evaluation of renewable-energy-based remote microgrids: curtailment, load shifting, and reliability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    11. Woltmann, Stefan & Kittel, Julia, 2022. "Development and implementation of multi-agent systems for demand response aggregators in an industrial context," Applied Energy, Elsevier, vol. 314(C).
    12. Xu, Ruoyu & Liu, Xiaochen & Liu, Xiaohua & Zhang, Tao, 2024. "Quantifying the energy flexibility potential of a centralized air-conditioning system: A field test study of hub airports," Energy, Elsevier, vol. 298(C).
    13. Astriani, Yuli & Shafiullah, GM & Shahnia, Farhad, 2021. "Incentive determination of a demand response program for microgrids," Applied Energy, Elsevier, vol. 292(C).
    14. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    15. Nguyen, Hai-Tra & Safder, Usman & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2022. "Optimal demand side management scheduling-based bidirectional regulation of energy distribution network for multi-residential demand response with self-produced renewable energy," Applied Energy, Elsevier, vol. 322(C).
    16. Daniel Manfre Jaimes & Manuel Zamudio López & Hamidreza Zareipour & Mike Quashie, 2023. "A Hybrid Model for Multi-Day-Ahead Electricity Price Forecasting considering Price Spikes," Forecasting, MDPI, vol. 5(3), pages 1-23, July.
    17. Christo Odeyemi & Takashi Sekiyama, 2022. "A Review of Climate Security Discussions in Japan," IJERPH, MDPI, vol. 19(14), pages 1-21, July.
    18. Haider, Haider Tarish & Muhsen, Dhiaa Halboot & Al-Nidawi, Yaarob Mahjoob & Khatib, Tamer & See, Ong Hang, 2022. "A novel approach for multi-objective cost-peak optimization for demand response of a residential area in smart grids," Energy, Elsevier, vol. 254(PB).
    19. Fernández-Blanco, Ricardo & Morales, Juan Miguel & Pineda, Salvador, 2021. "Forecasting the price-response of a pool of buildings via homothetic inverse optimization," Applied Energy, Elsevier, vol. 290(C).
    20. Costa, Oswaldo L.V. & de Oliveira Ribeiro, Celma & Rego, Erik Eduardo & Stern, Julio Michael & Parente, Virginia & Kileber, Solange, 2017. "Robust portfolio optimization for electricity planning: An application based on the Brazilian electricity mix," Energy Economics, Elsevier, vol. 64(C), pages 158-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924015241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.