IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipas0306261924014417.html
   My bibliography  Save this article

A training-free non-intrusive air conditioning load monitoring method based on fuzzy comprehensive evaluation

Author

Listed:
  • Luan, Wenpeng
  • Wei, Zun
  • Liu, Bo
  • Yu, Yixin

Abstract

Air conditioner (AC) is a grid friendly load, monitoring its operating status plays a key role in evaluating user side potential for participation in demand response. With continuous innovations in AC technology, the AC operation characteristics have shown increasing complexity, which poses significant challenges for non-intrusive AC load monitoring. Furthermore, obtaining labeled training data for target scenarios is often challenging, which hinders deployment of many Non-Intrusive Load Monitoring (NILM) methods in practice. In this regard, this article proposes a training-free non-intrusive AC load monitoring method based on fuzzy comprehensive evaluation (FCE), which is very easy to deploy and has good robustness. Firstly, considering various influence factors, a FCE model is constructed based on common knowledge about AC. This model simulates the manual labeling process to locate AC operation periods. Secondly, an AC power estimation method based on weighted filtering is established, in which weighted filter is used to eliminate the non-AC load components that may overlap during AC operation periods. Specifically, an optimization model is constructed to make the cumulative power of the AC events in its working cycle approach zero, with the filter weight vector as the objective variable, in which a heuristic greedy algorithm is used to find the optimal filter weight vector. When multiple feasible solutions with similar objective function values are derived in the solving process, the probability of load events appearing in AC and non-AC operation periods are compared. The final solution is selected, taking into account the likelihood of each feasible solution corresponding to a load event sequence belonging to AC load. The testing results on the PecanStreet dataset and multiple real-world measured datasets prove the effectiveness of the proposed method in monitoring complex ACs with poor waveform consistency.

Suggested Citation

  • Luan, Wenpeng & Wei, Zun & Liu, Bo & Yu, Yixin, 2024. "A training-free non-intrusive air conditioning load monitoring method based on fuzzy comprehensive evaluation," Applied Energy, Elsevier, vol. 376(PA).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924014417
    DOI: 10.1016/j.apenergy.2024.124058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924014417
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luan, Wenpeng & Wei, Zun & Liu, Bo & Yu, Yixin, 2022. "Non-intrusive power waveform modeling and identification of air conditioning load," Applied Energy, Elsevier, vol. 324(C).
    2. Hao Ma & Juncheng Jia & Xinhao Yang & Weipeng Zhu & Hong Zhang, 2021. "MC-NILM: A Multi-Chain Disaggregation Method for NILM," Energies, MDPI, vol. 14(14), pages 1-14, July.
    3. Liu, Bo & Luan, Wenpeng & Yu, Yixin, 2017. "Dynamic time warping based non-intrusive load transient identification," Applied Energy, Elsevier, vol. 195(C), pages 634-645.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Bo & Hou, Yufan & Luan, Wenpeng & Liu, Zishuai & Chen, Sheng & Yu, Yixin, 2023. "A divide-and-conquer method for compression and reconstruction of smart meter data," Applied Energy, Elsevier, vol. 336(C).
    2. Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Effective non-intrusive load monitoring of buildings based on a novel multi-descriptor fusion with dimensionality reduction," Applied Energy, Elsevier, vol. 279(C).
    3. Krzysztof Dowalla & Piotr Bilski & Robert Łukaszewski & Augustyn Wójcik & Ryszard Kowalik, 2022. "Application of the Time-Domain Signal Analysis for Electrical Appliances Identification in the Non-Intrusive Load Monitoring," Energies, MDPI, vol. 15(9), pages 1-20, May.
    4. Song, Chunhe & Jing, Wei & Zeng, Peng & Yu, Haibin & Rosenberg, Catherine, 2018. "Energy consumption analysis of residential swimming pools for peak load shaving," Applied Energy, Elsevier, vol. 220(C), pages 176-191.
    5. Pascal A. Schirmer & Iosif Mporas & Akbar Sheikh-Akbari, 2021. "Identification of TV Channel Watching from Smart Meter Data Using Energy Disaggregation," Energies, MDPI, vol. 14(9), pages 1-16, April.
    6. Luan, Wenpeng & Wei, Zun & Liu, Bo & Yu, Yixin, 2022. "Non-intrusive power waveform modeling and identification of air conditioning load," Applied Energy, Elsevier, vol. 324(C).
    7. Liu, Yu & Liu, Congxiao & Ling, Qicheng & Zhao, Xin & Gao, Shan & Huang, Xueliang, 2021. "Toward smart distributed renewable generation via multi-uncertainty featured non-intrusive interactive energy monitoring," Applied Energy, Elsevier, vol. 303(C).
    8. Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Robust event-based non-intrusive appliance recognition using multi-scale wavelet packet tree and ensemble bagging tree," Applied Energy, Elsevier, vol. 267(C).
    9. Younghoon Kwak & Jihyun Hwang & Taewon Lee, 2018. "Load Disaggregation via Pattern Recognition: A Feasibility Study of a Novel Method in Residential Building," Energies, MDPI, vol. 11(4), pages 1-22, April.
    10. Huijuan Wang & Wenrong Yang & Tingyu Chen & Qingxin Yang, 2019. "An Optimal Load Disaggregation Method Based on Power Consumption Pattern for Low Sampling Data," Sustainability, MDPI, vol. 11(1), pages 1-16, January.
    11. Augustyn Wójcik & Piotr Bilski & Robert Łukaszewski & Krzysztof Dowalla & Ryszard Kowalik, 2021. "Identification of the State of Electrical Appliances with the Use of a Pulse Signal Generator," Energies, MDPI, vol. 14(3), pages 1-26, January.
    12. Shi, Xin & Ming, Hao & Shakkottai, Srinivas & Xie, Le & Yao, Jianguo, 2019. "Nonintrusive load monitoring in residential households with low-resolution data," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Moreno Jaramillo, Andres F. & Laverty, David M. & Morrow, D. John & Martinez del Rincon, Jesús & Foley, Aoife M., 2021. "Load modelling and non-intrusive load monitoring to integrate distributed energy resources in low and medium voltage networks," Renewable Energy, Elsevier, vol. 179(C), pages 445-466.
    14. Todic, Tamara & Stankovic, Vladimir & Stankovic, Lina, 2023. "An active learning framework for the low-frequency Non-Intrusive Load Monitoring problem," Applied Energy, Elsevier, vol. 341(C).
    15. Yan, Lei & Tian, Wei & Han, Jiayu & Li, Zuy, 2022. "Event-driven two-stage solution to non-intrusive load monitoring," Applied Energy, Elsevier, vol. 311(C).
    16. Liu, Yu & Liu, Wei & Shen, Yiwen & Zhao, Xin & Gao, Shan, 2021. "Toward smart energy user: Real time non-intrusive load monitoring with simultaneous switching operations," Applied Energy, Elsevier, vol. 287(C).
    17. Bode, Gerrit & Schreiber, Thomas & Baranski, Marc & Müller, Dirk, 2019. "A time series clustering approach for Building Automation and Control Systems," Applied Energy, Elsevier, vol. 238(C), pages 1337-1345.
    18. Huang, Jing & Qin, Rui, 2024. "Elman neural network considering dynamic time delay estimation for short-term forecasting of offshore wind power," Applied Energy, Elsevier, vol. 358(C).
    19. Tomasz Jasiński, 2020. "Modelling the Disaggregated Demand for Electricity in Residential Buildings Using Artificial Neural Networks (Deep Learning Approach)," Energies, MDPI, vol. 13(5), pages 1-16, March.
    20. Rashid, Haroon & Singh, Pushpendra & Stankovic, Vladimir & Stankovic, Lina, 2019. "Can non-intrusive load monitoring be used for identifying an appliance’s anomalous behaviour?," Applied Energy, Elsevier, vol. 238(C), pages 796-805.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924014417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.