IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v198y2022icp1082-1094.html
   My bibliography  Save this article

A game-theoretic approach for power pricing in a resilient supply chain considering a dual channel biorefining structure and the hybrid power plant

Author

Listed:
  • Rajabzadeh, Hamed
  • Babazadeh, Reza

Abstract

This study investigates power pricing decisions in a resilient supply chain, including the main biomass supplier, biorefinery, the hybrid power plant, and the backup supplier. The power plant's main fuel is considered biofuel derived from Jatropha Curcas L. (JCL). However, due to unavoidable uncertainties in biofuel supply links, the shortage in meeting demand is inevitable. Therefore, for increasing the supply chain's resiliency, the fossil fuel backup supplier is taken into account to make up the shortage with anticipated fossil fuel. Due to environmental concerns, the penalty cost is considered for excessive use of fossil fuel. The model is studied under two cases by considering a dual-channel biorefining. Different game-theoretic models are established for varied power configurations and interactions of supply chain members. It is observed from the numerical study that, depending on the fractional part of the power plant's requirements of biofuel and JCL supplied by the biorefinery (Case 1) and the main supplier (Case 2), respectively the performance of the supply chain increases in the presence of the backup supplier. Additionally, the sensitivity analysis shows that Case 1 is more profitable than Case 2 for chain members. Moreover, in contrast to the fossil fuel replacement coefficient, the greater the convertibility degree of the JCL, the larger the profits for the members.

Suggested Citation

  • Rajabzadeh, Hamed & Babazadeh, Reza, 2022. "A game-theoretic approach for power pricing in a resilient supply chain considering a dual channel biorefining structure and the hybrid power plant," Renewable Energy, Elsevier, vol. 198(C), pages 1082-1094.
  • Handle: RePEc:eee:renene:v:198:y:2022:i:c:p:1082-1094
    DOI: 10.1016/j.renene.2022.08.118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122012939
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.08.118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emrani, Anisa & Berrada, Asmae & Bakhouya, Mohamed, 2022. "Optimal sizing and deployment of gravity energy storage system in hybrid PV-Wind power plant," Renewable Energy, Elsevier, vol. 183(C), pages 12-27.
    2. Djellouli, Nassima & Abdelli, Latifa & Elheddad, Mohamed & Ahmed, Rizwan & Mahmood, Haider, 2022. "The effects of non-renewable energy, renewable energy, economic growth, and foreign direct investment on the sustainability of African countries," Renewable Energy, Elsevier, vol. 183(C), pages 676-686.
    3. Srinivasan, Dipti & Rajgarhia, Sanjana & Radhakrishnan, Bharat Menon & Sharma, Anurag & Khincha, H.P., 2017. "Game-Theory based dynamic pricing strategies for demand side management in smart grids," Energy, Elsevier, vol. 126(C), pages 132-143.
    4. Awudu, Iddrisu & Zhang, Jun, 2012. "Uncertainties and sustainability concepts in biofuel supply chain management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1359-1368.
    5. Fattahi, Mohammad & Govindan, Kannan, 2018. "A multi-stage stochastic program for the sustainable design of biofuel supply chain networks under biomass supply uncertainty and disruption risk: A real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 534-567.
    6. Mendecka, Barbara & Chiappini, Daniele & Tribioli, Laura & Cozzolino, Raffaello, 2021. "A biogas-solar based hybrid off-grid power plant with multiple storages for United States commercial buildings," Renewable Energy, Elsevier, vol. 179(C), pages 705-722.
    7. Zeng, Amy Z. & Xia, Yu, 2015. "Building a mutually beneficial partnership to ensure backup supply," Omega, Elsevier, vol. 52(C), pages 77-91.
    8. Lo, Shirleen Lee Yuen & How, Bing Shen & Leong, Wei Dong & Teng, Sin Yong & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Techno-economic analysis for biomass supply chain: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Petrollese, Mario & Cocco, Daniele, 2020. "Techno-economic assessment of hybrid CSP-biogas power plants," Renewable Energy, Elsevier, vol. 155(C), pages 420-431.
    10. Shamsi, Meisam & Babazadeh, Reza, 2022. "Estimation and prediction of Jatropha cultivation areas in China and India," Renewable Energy, Elsevier, vol. 183(C), pages 548-560.
    11. Nicolas Martinez & Youssef Benchaabane & Rosa Elvira Silva & Adrian Ilinca & Hussein Ibrahim & Ambrish Chandra & Daniel R. Rousse, 2019. "Computer Model for a Wind–Diesel Hybrid System with Compressed Air Energy Storage," Energies, MDPI, vol. 12(18), pages 1-18, September.
    12. Basu, Preetam & Avittathur, Balram, 2018. "Pricing and sourcing strategies for competing retailers in supply chains under disruption riskAuthor-Name: Kumar, Milan," European Journal of Operational Research, Elsevier, vol. 265(2), pages 533-543.
    13. Rahman, Mohammad Mafizur & Sultana, Nahid & Velayutham, Eswaran, 2022. "Renewable energy, energy intensity and carbon reduction: Experience of large emerging economies," Renewable Energy, Elsevier, vol. 184(C), pages 252-265.
    14. Armin Jabbarzadeh & Behnam Fahimnia & Fatemeh Sabouhi, 2018. "Resilient and sustainable supply chain design: sustainability analysis under disruption risks," International Journal of Production Research, Taylor & Francis Journals, vol. 56(17), pages 5945-5968, September.
    15. Dai, Yeming & Sun, Xilian & Qi, Yao & Leng, Mingming, 2021. "A real-time, personalized consumption-based pricing scheme for the consumptions of traditional and renewable energies," Renewable Energy, Elsevier, vol. 180(C), pages 452-466.
    16. Jafar Namdar & Xueping Li & Rupy Sawhney & Ninad Pradhan, 2018. "Supply chain resilience for single and multiple sourcing in the presence of disruption risks," International Journal of Production Research, Taylor & Francis Journals, vol. 56(6), pages 2339-2360, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Habib, Muhammad Salman & Hwang, Seung-June, 2024. "Developing sustainable, resilient, and responsive biofuel production and distribution management system: A neutrosophic fuzzy optimization approach based on artificial intelligence and geographic info," Applied Energy, Elsevier, vol. 372(C).
    2. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2023. "Optimizing utilization pathways for biomass to chemicals and energy by integrating emergy analysis and particle swarm optimization (PSO)," Renewable Energy, Elsevier, vol. 202(C), pages 1448-1459.
    3. Gital, Yeşim & Bilgen, Bilge, 2024. "Resilient strategies for managing supply and facility disruptions in a biomass supply chain," Applied Energy, Elsevier, vol. 372(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shoufeng Ji & Pengyun Zhao & Tingting Ji, 2023. "A Hybrid Optimization Method for Sustainable and Flexible Design of Supply–Production–Distribution Network in the Physical Internet," Sustainability, MDPI, vol. 15(7), pages 1-34, April.
    2. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    3. Aghajani, Mojtaba & Ali Torabi, S. & Altay, Nezih, 2023. "Resilient relief supply planning using an integrated procurement-warehousing model under supply disruption," Omega, Elsevier, vol. 118(C).
    4. Gital, Yeşim & Bilgen, Bilge, 2024. "Resilient strategies for managing supply and facility disruptions in a biomass supply chain," Applied Energy, Elsevier, vol. 372(C).
    5. Luis Francisco López-Castro & Elyn L. Solano-Charris, 2021. "Integrating Resilience and Sustainability Criteria in the Supply Chain Network Design. A Systematic Literature Review," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    6. Hanieh Shekarabi & Mohammad Mahdi Vali-Siar & Ashkan Mozdgir, 2024. "Food supply chain network design under uncertainty and pandemic disruption," Operational Research, Springer, vol. 24(2), pages 1-37, June.
    7. Guo, Jian-Xin & Tan, Xianchun & Gu, Baihe & Zhu, Kaiwei, 2022. "Integration of supply chain management of hybrid biomass power plant with carbon capture and storage operation," Renewable Energy, Elsevier, vol. 190(C), pages 1055-1065.
    8. Li, Zhengbing & Liang, Yongtu & Ni, Weilong & Liao, Qi & Xu, Ning & Li, Lichao & Zheng, Jianqin & Zhang, Haoran, 2022. "Pipesharing: economic-environmental benefits from transporting biofuels through multiproduct pipelines," Applied Energy, Elsevier, vol. 311(C).
    9. Khadija Echefaj & Abdelkabir Charkaoui & Anass Cherrafi & Dmitry Ivanov, 2024. "Design of resilient and viable sourcing strategies in intertwined circular supply networks," Annals of Operations Research, Springer, vol. 337(1), pages 459-498, June.
    10. Shashi & Piera Centobelli & Roberto Cerchione & Myriam Ertz, 2020. "Managing supply chain resilience to pursue business and environmental strategies," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 1215-1246, March.
    11. Bhavya Sharma & Murari Lal Mittal & Gunjan Soni & Bharti Ramtiyal, 2023. "An Implementation Framework for Resiliency Assessment in a Supply Chain," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(4), pages 591-614, December.
    12. Cagri Gurbuz, Mustafa & Yurt, Oznur & Ozdemir, Sena & Sena, Vania & Yu, Wantao, 2023. "Global supply chains risks and COVID-19: Supply chain structure as a mitigating strategy for small and medium-sized enterprises," Journal of Business Research, Elsevier, vol. 155(PB).
    13. Nayeri, Sina & Sazvar, Zeinab & Heydari, Jafar, 2022. "A global-responsive supply chain considering sustainability and resiliency: Application in the medical devices industry," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    14. Guo, Haidong & Wang, Shengyu & Zhang, Yu, 2021. "Supply interruption supply chain network model with uncertain demand: an application of chance-constrained programming with fuzzy parameters," LSE Research Online Documents on Economics 114936, London School of Economics and Political Science, LSE Library.
    15. K. Katsaliaki & P. Galetsi & S. Kumar, 2022. "Supply chain disruptions and resilience: a major review and future research agenda," Annals of Operations Research, Springer, vol. 319(1), pages 965-1002, December.
    16. Cheramin, Meysam & Saha, Apurba Kumar & Cheng, Jianqiang & Paul, Sanjoy Kumar & Jin, Hongyue, 2021. "Resilient NdFeB magnet recycling under the impacts of COVID-19 pandemic: Stochastic programming and Benders decomposition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    17. Suriana Ramli & Norzanah Mat Nor & Mohammad Nazri & Sharizan Sharkawi, 2024. "COVID-19’S Impact on Malaysian SMEs: Supply Chain Risk Management Disruptions and Challenges for Business Recovery and Continuity," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(8), pages 153-163, August.
    18. Na Wang & Jingze Chen & Hongfeng Wang, 2023. "Resilient Supply Chain Optimization Considering Alternative Supplier Selection and Temporary Distribution Center Location," Mathematics, MDPI, vol. 11(18), pages 1-22, September.
    19. Guo, Changqiang & Hu, Hao & Wang, Shaowen & Rodriguez, Luis F. & Ting, K.C. & Lin, Tao, 2022. "Multiperiod stochastic programming for biomass supply chain design under spatiotemporal variability of feedstock supply," Renewable Energy, Elsevier, vol. 186(C), pages 378-393.
    20. Sara Al-Haidous & Tareq Al-Ansari, 2019. "Sustainable Liquefied Natural Gas Supply Chain Management: A Review of Quantitative Models," Sustainability, MDPI, vol. 12(1), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:198:y:2022:i:c:p:1082-1094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.