IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v367y2024ics0306261924008080.html
   My bibliography  Save this article

Flexible photovoltaic micro-power system enabled with a customized MPPT

Author

Listed:
  • Wang, Zhenlong
  • Wang, Yifan
  • Zhang, Xinrui
  • Yang, Dong
  • Ma, Duanyu
  • Ramakrishna, Seeram
  • Yuan, Weizheng
  • Ye, Tao

Abstract

With the requirement for self-powering functionality in wearable electronics, a small power range flexible photovoltaic micro-power system is evidently needed. Furthermore, non-flexibility, large volume/weight, power consumption constraints, and cost considerations make it impractical to directly use the large power range complex maximum power point tracking (MPPT) algorithm and hardware in wearable electronics. This work aims to design a fully flexible photovoltaic micro-power system for reliable energy supply within the low power range for wearable electronics. In this study, a customized fractional open circuit voltage (FOCV) algorithm and a performance-matching DC-DC converter are designed, and then integrated with a flexible perovskite solar module to develop a fully flexible photovoltaic micro-power system. Indoor and outdoor experiments are conducted to evaluate its performance. The designed MPPT system achieves a high tracking accuracy of 99.25% at a power of 0.539 W with a fast tracking time of 0.20 s, which is an effective improvement over the traditional algorithms. These values are 97.8% and 0.21 s under shaded lighting conditions. The MPPT system is lightweight (4.6 g) with a size of <3 × 3 cm2. Tracking experiments with flexible solar modules after bending also demonstrate the flexibility of the system, which also shows the high utilization and fast response capability for small power range photovoltaic outputs. The fully flexible photovoltaic micro-power system demonstrates great potential for future wearable electronics and expands the way to efficiently harvest solar energy in highly adaptive and dynamic applications.

Suggested Citation

  • Wang, Zhenlong & Wang, Yifan & Zhang, Xinrui & Yang, Dong & Ma, Duanyu & Ramakrishna, Seeram & Yuan, Weizheng & Ye, Tao, 2024. "Flexible photovoltaic micro-power system enabled with a customized MPPT," Applied Energy, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924008080
    DOI: 10.1016/j.apenergy.2024.123425
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924008080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    2. Trainer, FE, 1995. "Can renewable energy sources sustain affluent society?," Energy Policy, Elsevier, vol. 23(12), pages 1009-1026, December.
    3. Jately, Vibhu & Azzopardi, Brian & Joshi, Jyoti & Venkateswaran V, Balaji & Sharma, Abhinav & Arora, Sudha, 2021. "Experimental Analysis of hill-climbing MPPT algorithms under low irradiance levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Jie Wang & Shengming Li & Fang Yi & Yunlong Zi & Jun Lin & Xiaofeng Wang & Youlong Xu & Zhong Lin Wang, 2016. "Sustainably powering wearable electronics solely by biomechanical energy," Nature Communications, Nature, vol. 7(1), pages 1-8, November.
    5. Fabrizio Giordano & Antonio Abate & Juan Pablo Correa Baena & Michael Saliba & Taisuke Matsui & Sang Hyuk Im & Shaik M. Zakeeruddin & Mohammad Khaja Nazeeruddin & Anders Hagfeldt & Michael Graetzel, 2016. "Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells," Nature Communications, Nature, vol. 7(1), pages 1-6, April.
    6. Refaat, Ahmed & Ali, Qays Adnan & Elsakka, Mohamed Mohamed & Elhenawy, Yasser & Majozi, Thokozani & Korovkin, Nikolay V. & Elfar, Medhat Hegazy, 2024. "Extraction of maximum power from PV system based on horse herd optimization MPPT technique under various weather conditions," Renewable Energy, Elsevier, vol. 220(C).
    7. Verma, Deepak & Nema, Savita & Shandilya, A.M. & Dash, Soubhagya K., 2016. "Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1018-1034.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Wang & Yaolin Dong & Yue Liu & Ripeng Li & Chunsheng Wang, 2024. "Inductor Current-Based Control Strategy for Efficient Power Tracking in Distributed PV Systems," Mathematics, MDPI, vol. 12(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arshdeep Singh & Shimi Sudha Letha, 2019. "Emerging energy sources for electric vehicle charging station," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2043-2082, October.
    2. Kishore, D.J. Krishna & Mohamed, M.R. & Sudhakar, K. & Peddakapu, K., 2023. "Swarm intelligence-based MPPT design for PV systems under diverse partial shading conditions," Energy, Elsevier, vol. 265(C).
    3. Amir, A. & Amir, A. & Selvaraj, J. & Rahim, N.A., 2016. "Study of the MPP tracking algorithms: Focusing the numerical method techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 350-371.
    4. Lafarge, Barbara & Grondel, Sébastien & Delebarre, Christophe & Curea, Octavian & Richard, Claude, 2021. "Linear electromagnetic energy harvester system embedded on a vehicle suspension: From modeling to performance analysis," Energy, Elsevier, vol. 225(C).
    5. Hamid Chojaa & Aziz Derouich & Mohammed Taoussi & Seif Eddine Chehaidia & Othmane Zamzoum & Mohamed I. Mosaad & Ayman Alhejji & Mourad Yessef, 2022. "Nonlinear Control Strategies for Enhancing the Performance of DFIG-Based WECS under a Real Wind Profile," Energies, MDPI, vol. 15(18), pages 1-23, September.
    6. Yazhou Zhao & Xiangxi Qin & Xiangyu Shi, 2022. "A Comprehensive Evaluation Model on Optimal Operational Schedules for Battery Energy Storage System by Maximizing Self-Consumption Strategy and Genetic Algorithm," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    7. Mostafa Ahmed & Mohamed Abdelrahem & Ibrahim Harbi & Ralph Kennel, 2020. "An Adaptive Model-Based MPPT Technique with Drift-Avoidance for Grid-Connected PV Systems," Energies, MDPI, vol. 13(24), pages 1-25, December.
    8. Liu, Junbo & Cai, Chang & Song, Dongran & Zhong, Xiaohui & Shi, Kezhong & Chen, Yinpeng & Cheng, Shijie & Huang, Yupian & Jiang, Xue & Li, Qing'an, 2024. "Nonlinear model predictive control for maximum wind energy extraction of semi-submersible floating offshore wind turbine based on simplified dynamics model," Energy, Elsevier, vol. 311(C).
    9. Haoming Liu & Muhammad Yasir Ali Khan & Xiaoling Yuan, 2023. "Hybrid Maximum Power Extraction Methods for Photovoltaic Systems: A Comprehensive Review," Energies, MDPI, vol. 16(15), pages 1-64, July.
    10. Memon, Mudasir Ahmed & Mekhilef, Saad & Mubin, Marizan & Aamir, Muhammad, 2018. "Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2235-2253.
    11. Dave Elliott, 2004. "Energy Efficiency and Renewables," Energy & Environment, , vol. 15(6), pages 1099-1105, November.
    12. Salah, Mostafa M. & Saeed, Ahmed & Mousa, Mohamed & Abouelatta, Mohamed & Zekry, A. & Shaker, Ahmed & Amer, Fathy Z. & Mubarak, Roaa I., 2024. "Numerical analysis of carbon-based perovskite tandem solar cells: Pathways towards high efficiency and stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Cao, Dong-Xing & Lu, Yi-Ming & Lai, Siu-Kai & Mao, Jia-Jia & Guo, Xiang-Ying & Shen, Yong-Jun, 2022. "A novel soft encapsulated multi-directional and multi-modal piezoelectric vibration energy harvester," Energy, Elsevier, vol. 254(PB).
    14. Belqasem Aljafari & Siva Rama Krishna Madeti & Priya Ranjan Satpathy & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2022. "Automatic Monitoring System for Online Module-Level Fault Detection in Grid-Tied Photovoltaic Plants," Energies, MDPI, vol. 15(20), pages 1-28, October.
    15. Başoğlu, Mustafa Engin & Çakır, Bekir, 2016. "Comparisons of MPPT performances of isolated and non-isolated DC–DC converters by using a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1100-1113.
    16. Elani, U.A. & Alawaji, S.H. & Hasnain, S.M., 1996. "The role of renewable energy in energy management and conservation," Renewable Energy, Elsevier, vol. 9(1), pages 1203-1206.
    17. Tai Li & Yanbo Wang & Sunan Sun & Huimin Qian & Leqiu Wang & Lei Wang & Yanxia Shen & Zhicheng Ji, 2023. "Fuzzy Active Disturbance Rejection-Based Virtual Inertia Control Strategy for Wind Farms," Energies, MDPI, vol. 16(10), pages 1-16, May.
    18. Lin, Zhongwei & Chen, Zhenyu & Liu, Jizhen & Wu, Qiuwei, 2019. "Coordinated mechanical loads and power optimization of wind energy conversion systems with variable-weight model predictive control strategy," Applied Energy, Elsevier, vol. 236(C), pages 307-317.
    19. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    20. Fathabadi, Hassan, 2016. "Novel highly accurate universal maximum power point tracker for maximum power extraction from hybrid fuel cell/photovoltaic/wind power generation systems," Energy, Elsevier, vol. 116(P1), pages 402-416.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924008080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.