IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v366y2024ics0306261924006743.html
   My bibliography  Save this article

Situational awareness-enhancing community-level load mapping with opportunistic machine learning

Author

Listed:
  • Pylorof, Dimitrios
  • Garcia, Humberto E.

Abstract

Motivated by present and forthcoming challenges in the adoption and integration of distributed renewable energy, we develop a machine learning (ML) approach that builds short-fuse mappings connecting the occasionally-unobservable true load in one target community with information-rich signals collected from relatively more instrumented reference communities. Our setting is inspired by and tailored to target communities with significant unobservable behind-the-meter solar generation, where true load (a relatively well-behaved quantity of interest to grid operators) is hard to discern during daytime due to insufficient instrumentation and/or privacy reasons, but that can be related to reference communities with low unobservable distributed variable generation or with sufficient instrumentation. The developed mapping, herein realized with Support Vector Machine regression, is built using nighttime data from all communities, when their distributed generation is low or zero. Our ML algorithm opportunistically learns to correlate signals of interest and then is operationally used the next day to shed light into target community load evolution. The mapping is subsequently rebuilt, rolling its short-fuse scope perpetually forward in time. We demonstrate the efficacy of our approach on nine synthetically generated topologies and associated timeseries stemming from real-world data, on which we observe cumulative error performance that yields lower than 10% and 15% daily-averaged mean absolute percentage errors in target community load estimation on more than about 75% and 90% of days, respectively, in multiple yearly evaluations that shed light on long-term performance also under seasonal and one-off effects. The proposed ML-powered methodology can offer grid operators much-improved visibility into a previously obscure space and can also serve as an additional source of information in broader, multi-modal solar disaggregation solutions.

Suggested Citation

  • Pylorof, Dimitrios & Garcia, Humberto E., 2024. "Situational awareness-enhancing community-level load mapping with opportunistic machine learning," Applied Energy, Elsevier, vol. 366(C).
  • Handle: RePEc:eee:appene:v:366:y:2024:i:c:s0306261924006743
    DOI: 10.1016/j.apenergy.2024.123291
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924006743
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123291?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scott Agnew & Paul Dargusch, 2015. "Effect of residential solar and storage on centralized electricity supply systems," Nature Climate Change, Nature, vol. 5(4), pages 315-318, April.
    2. Feng, Yonghan & Ryan, Sarah M., 2016. "Day-ahead hourly electricity load modeling by functional regression," Applied Energy, Elsevier, vol. 170(C), pages 455-465.
    3. Passey, Robert & Spooner, Ted & MacGill, Iain & Watt, Muriel & Syngellakis, Katerina, 2011. "The potential impacts of grid-connected distributed generation and how to address them: A review of technical and non-technical factors," Energy Policy, Elsevier, vol. 39(10), pages 6280-6290, October.
    4. Li, Han & Wang, Zhe & Hong, Tianzhen & Parker, Andrew & Neukomm, Monica, 2021. "Characterizing patterns and variability of building electric load profiles in time and frequency domains," Applied Energy, Elsevier, vol. 291(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalkbrenner, Bernhard J., 2019. "Residential vs. community battery storage systems – Consumer preferences in Germany," Energy Policy, Elsevier, vol. 129(C), pages 1355-1363.
    2. Pullinger, Martin & Zapata-Webborn, Ellen & Kilgour, Jonathan & Elam, Simon & Few, Jessica & Goddard, Nigel & Hanmer, Clare & McKenna, Eoghan & Oreszczyn, Tadj & Webb, Lynda, 2024. "Capturing variation in daily energy demand profiles over time with cluster analysis in British homes (September 2019 – August 2022)," Applied Energy, Elsevier, vol. 360(C).
    3. Jean-Henry Ferrasse & Nandeeta Neerunjun & Hubert Stahn, 2021. "Managing intermittency in the electricity market," Working Papers halshs-03154612, HAL.
    4. Georgopoulou, E. & Mirasgedis, S. & Sarafidis, Y. & Gakis, N. & Hontou, V. & Lalas, D.P. & Steiner, D. & Tuerk, A. & Fruhmann, C. & Pucker, J., 2015. "Lessons learnt from a sectoral analysis of greenhouse gas mitigation potential in the Balkans," Energy, Elsevier, vol. 92(P3), pages 577-591.
    5. Bernard Arogyaswamy, 2022. "Climate Change Mitigation Technologies: Prospects and Challenges," Modern Applied Science, Canadian Center of Science and Education, vol. 16(4), pages 1-1, November.
    6. Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P. & Bouzerdoum, A., 2017. "Short-term electricity demand forecasting using autoregressive based time varying model incorporating representative data adjustment," Applied Energy, Elsevier, vol. 205(C), pages 790-801.
    7. Hugo Morais & Tiago Pinto & Zita Vale, 2020. "Adjacent Markets Influence Over Electricity Trading—Iberian Benchmark Study," Energies, MDPI, vol. 13(11), pages 1-22, June.
    8. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.
    9. Anaya, Karim L. & Pollitt, Michael G., 2015. "Integrating distributed generation: Regulation and trends in three leading countries," Energy Policy, Elsevier, vol. 85(C), pages 475-486.
    10. Klein, Martin & Ziade, Ahmad & de Vries, Laurens, 2019. "Aligning prosumers with the electricity wholesale market – The impact of time-varying price signals and fixed network charges on solar self-consumption," Energy Policy, Elsevier, vol. 134(C).
    11. Iazzolino, Gianpaolo & Sorrentino, Nicola & Menniti, Daniele & Pinnarelli, Anna & De Carolis, Monica & Mendicino, Luca, 2022. "Energy communities and key features emerged from business models review," Energy Policy, Elsevier, vol. 165(C).
    12. Liu, Che & Li, Fan & Zhang, Chenghui & Sun, Bo & Zhang, Guanguan, 2023. "A day-ahead prediction method for high-resolution electricity consumption in residential units," Energy, Elsevier, vol. 265(C).
    13. Xu, Xiuqin & Chen, Ying & Goude, Yannig & Yao, Qiwei, 2021. "Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression," Applied Energy, Elsevier, vol. 301(C).
    14. Kalkbrenner, Bernhard J. & Yonezawa, Koichi & Roosen, Jutta, 2017. "Consumer preferences for electricity tariffs: Does proximity matter?," Energy Policy, Elsevier, vol. 107(C), pages 413-424.
    15. Mashlakov, Aleksei & Pournaras, Evangelos & Nardelli, Pedro H.J. & Honkapuro, Samuli, 2021. "Decentralized cooperative scheduling of prosumer flexibility under forecast uncertainties," Applied Energy, Elsevier, vol. 290(C).
    16. Poppen, Silvia, 2014. "Auswirkungen dezentraler Erzeugungsanlagen auf das Stromversorgungssystem: Ausgestaltungsmöglichkeiten der Bereitstellung neuer Erzeugungsanlagen," Arbeitspapiere 146, University of Münster, Institute for Cooperatives.
    17. Hilary Boudet & Chad Zanocco & Greg Stelmach & Mahmood Muttaqee & June Flora, 2021. "Public preferences for five electricity grid decarbonization policies in California," Review of Policy Research, Policy Studies Organization, vol. 38(5), pages 510-528, September.
    18. Mohammad Alipour & Rodney A. Stewart & Oz Sahin, 2021. "Beyond the Diffusion of Residential Solar Photovoltaic Systems at Scale: Allegorising the Battery Energy Storage Adoption Behaviour," Energies, MDPI, vol. 14(16), pages 1-12, August.
    19. Müller, Simon C. & Welpe, Isabell M., 2018. "Sharing electricity storage at the community level: An empirical analysis of potential business models and barriers," Energy Policy, Elsevier, vol. 118(C), pages 492-503.
    20. Tukia, Toni & Uimonen, Semen & Siikonen, Marja-Liisa & Donghi, Claudio & Lehtonen, Matti, 2019. "Modeling the aggregated power consumption of elevators – the New York city case study," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:366:y:2024:i:c:s0306261924006743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.