IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v291y2021ics0306261921002397.html
   My bibliography  Save this article

Characterizing patterns and variability of building electric load profiles in time and frequency domains

Author

Listed:
  • Li, Han
  • Wang, Zhe
  • Hong, Tianzhen
  • Parker, Andrew
  • Neukomm, Monica

Abstract

The rapid development of advanced metering infrastructure provides a new data source—building electrical load profiles with high temporal resolution. Electric load profile characterization can generate useful information to enhance building energy modeling and provide metrics to represent patterns and variability of load profiles. Such characterizations can be used to identify changes to building electricity demand due to operations or faulty equipment and controls. In this study, we proposed a two-path approach to analyze high temporal resolution building electrical load profiles: (1) time-domain analysis and (2) frequency-domain analysis. The commonly adopted time-domain analysis can extract and quantify the distribution of key parameters characterizing load shape such as peak-base load ratio and morning rise time, while a frequency-domain analysis can identify major periodic fluctuations and quantify load variability. We implemented and evaluated both paths using whole-year 15-minute interval smart meter data of 188 commercial office building in Northern California. The results from these two paths are consistent with each other and complementary to represent full dynamics of load profiles. The time- and frequency-domain analyses can be used to enhance building energy modeling by: (1) providing more realistic assumptions about building operation schedules, and (2) validating the simulated electric load profiles using the developed variability metrics against the real building load data.

Suggested Citation

  • Li, Han & Wang, Zhe & Hong, Tianzhen & Parker, Andrew & Neukomm, Monica, 2021. "Characterizing patterns and variability of building electric load profiles in time and frequency domains," Applied Energy, Elsevier, vol. 291(C).
  • Handle: RePEc:eee:appene:v:291:y:2021:i:c:s0306261921002397
    DOI: 10.1016/j.apenergy.2021.116721
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921002397
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116721?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D’Oca, Simona & Hong, Tianzhen & Langevin, Jared, 2018. "The human dimensions of energy use in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 731-742.
    2. Zhou, Kai-le & Yang, Shan-lin & Shen, Chao, 2013. "A review of electric load classification in smart grid environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 103-110.
    3. Bianchi, Carlo & Zhang, Liang & Goldwasser, David & Parker, Andrew & Horsey, Henry, 2020. "Modeling occupancy-driven building loads for large and diversified building stocks through the use of parametric schedules," Applied Energy, Elsevier, vol. 276(C).
    4. Luo, Xuan & Hong, Tianzhen & Chen, Yixing & Piette, Mary Ann, 2017. "Electric load shape benchmarking for small- and medium-sized commercial buildings," Applied Energy, Elsevier, vol. 204(C), pages 715-725.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Che & Li, Fan & Zhang, Chenghui & Sun, Bo & Zhang, Guanguan, 2023. "A day-ahead prediction method for high-resolution electricity consumption in residential units," Energy, Elsevier, vol. 265(C).
    2. Pylorof, Dimitrios & Garcia, Humberto E., 2024. "Situational awareness-enhancing community-level load mapping with opportunistic machine learning," Applied Energy, Elsevier, vol. 366(C).
    3. Tepe, Benedikt & Haberschusz, David & Figgener, Jan & Hesse, Holger & Uwe Sauer, Dirk & Jossen, Andreas, 2023. "Feature-conserving gradual anonymization of load profiles and the impact on battery storage systems," Applied Energy, Elsevier, vol. 343(C).
    4. Pullinger, Martin & Zapata-Webborn, Ellen & Kilgour, Jonathan & Elam, Simon & Few, Jessica & Goddard, Nigel & Hanmer, Clare & McKenna, Eoghan & Oreszczyn, Tadj & Webb, Lynda, 2024. "Capturing variation in daily energy demand profiles over time with cluster analysis in British homes (September 2019 – August 2022)," Applied Energy, Elsevier, vol. 360(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Capozzoli, Alfonso & Piscitelli, Marco Savino & Brandi, Silvio & Grassi, Daniele & Chicco, Gianfranco, 2018. "Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings," Energy, Elsevier, vol. 157(C), pages 336-352.
    2. Aldubyan, Mohammad & Krarti, Moncef, 2022. "Impact of stay home living on energy demand of residential buildings: Saudi Arabian case study," Energy, Elsevier, vol. 238(PA).
    3. Jacqueline Nicole Adams & Zsófia Deme Bélafi & Miklós Horváth & János Balázs Kocsis & Tamás Csoknyai, 2021. "How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review," Energies, MDPI, vol. 14(9), pages 1-23, April.
    4. Rajabi, Amin & Eskandari, Mohsen & Ghadi, Mojtaba Jabbari & Li, Li & Zhang, Jiangfeng & Siano, Pierluigi, 2020. "A comparative study of clustering techniques for electrical load pattern segmentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    5. Park, June Young & Yang, Xiya & Miller, Clayton & Arjunan, Pandarasamy & Nagy, Zoltan, 2019. "Apples or oranges? Identification of fundamental load shape profiles for benchmarking buildings using a large and diverse dataset," Applied Energy, Elsevier, vol. 236(C), pages 1280-1295.
    6. Haidar, Ahmed M.A. & Muttaqi, Kashem & Sutanto, Danny, 2015. "Smart Grid and its future perspectives in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1375-1389.
    7. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Mitigation analysis of water consumption for power generation and air conditioning of residential buildings: Case study of Saudi Arabia," Applied Energy, Elsevier, vol. 290(C).
    8. Molina-Solana, Miguel & Ros, María & Ruiz, M. Dolores & Gómez-Romero, Juan & Martin-Bautista, M.J., 2017. "Data science for building energy management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 598-609.
    9. Zhou, Kaile & Yang, Shanlin, 2015. "A framework of service-oriented operation model of China׳s power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 719-725.
    10. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    11. Hyun Cheol Jeong & Jaesung Jung & Byung O Kang, 2020. "Development of Operational Strategies of Energy Storage System Using Classification of Customer Load Profiles under Time-of-Use Tariffs in South Korea," Energies, MDPI, vol. 13(7), pages 1-17, April.
    12. Irfan, Muhammad & Iqbal, Jamshed & Iqbal, Adeel & Iqbal, Zahid & Riaz, Raja Ali & Mehmood, Adeel, 2017. "Opportunities and challenges in control of smart grids – Pakistani perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 652-674.
    13. Lee, Junsoo & Kim, Tae Wan & Koo, Choongwan, 2022. "A novel process model for developing a scalable room-level energy benchmark using real-time bigdata: Focused on identifying representative energy usage patterns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    14. Zhou, Kaile & Yang, Shanlin, 2016. "Emission reduction of China׳s steel industry: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 319-327.
    15. Hou, Jin & Xu, Peng & Lu, Xing & Pang, Zhihong & Chu, Yiyi & Huang, Gongsheng, 2018. "Implementation of expansion planning in existing district energy system: A case study in China," Applied Energy, Elsevier, vol. 211(C), pages 269-281.
    16. Reddy, K.S. & Kumar, Madhusudan & Mallick, T.K. & Sharon, H. & Lokeswaran, S., 2014. "A review of Integration, Control, Communication and Metering (ICCM) of renewable energy based smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 180-192.
    17. Qadeer Ali & Muhammad Jamaluddin Thaheem & Fahim Ullah & Samad M. E. Sepasgozar, 2020. "The Performance Gap in Energy-Efficient Office Buildings: How the Occupants Can Help?," Energies, MDPI, vol. 13(6), pages 1-27, March.
    18. Lu Jiang & Xingpeng Chen & Bing Xue, 2019. "Features, Driving Forces and Transition of the Household Energy Consumption in China: A Review," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    19. Henni, Sarah & Staudt, Philipp & Weinhardt, Christof, 2021. "A sharing economy for residential communities with PV-coupled battery storage: Benefits, pricing and participant matching," Applied Energy, Elsevier, vol. 301(C).
    20. Bragolusi, Paolo & D'Alpaos, Chiara, 2022. "The valuation of buildings energy retrofitting: A multiple-criteria approach to reconcile cost-benefit trade-offs and energy savings," Applied Energy, Elsevier, vol. 310(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:291:y:2021:i:c:s0306261921002397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.