Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-020-14402-0
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bohua Ren & Guobin Wen & Rui Gao & Dan Luo & Zhen Zhang & Weibin Qiu & Qianyi Ma & Xin Wang & Yi Cui & Luis Ricardez–Sandoval & Aiping Yu & Zhongwei Chen, 2022. "Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Meng Wang & Bingqing Wang & Jiguang Zhang & Shibo Xi & Ning Ling & Ziyu Mi & Qin Yang & Mingsheng Zhang & Wan Ru Leow & Jia Zhang & Yanwei Lum, 2024. "Acidic media enables oxygen-tolerant electrosynthesis of multicarbon products from simulated flue gas," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Li, Yifu & Zhang, Zhien & Huang, Yunqiao & Zhang, Yi & Akula, Sivaraju, 2024. "Recent advancements in the application of electrospun nanofibers for carbon dioxide capture and utilization," Applied Energy, Elsevier, vol. 365(C).
- Lei Chen & Junmei Chen & Weiwei Fu & Jiayi Chen & Di Wang & Yukun Xiao & Shibo Xi & Yongfei Ji & Lei Wang, 2024. "Energy-efficient CO(2) conversion to multicarbon products at high rates on CuGa bimetallic catalyst," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Yaguang Li & Xianhua Bai & Dachao Yuan & Chenyang Yu & Xingyuan San & Yunna Guo & Liqiang Zhang & Jinhua Ye, 2023. "Cu-based high-entropy two-dimensional oxide as stable and active photothermal catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Cai Wang & Xiaoyu Wang & Houan Ren & Yilin Zhang & Xiaomei Zhou & Jing Wang & Qingxin Guan & Yuping Liu & Wei Li, 2023. "Combining Fe nanoparticles and pyrrole-type Fe-N4 sites on less-oxygenated carbon supports for electrochemical CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Zhibo Yao & Hao Cheng & Yifei Xu & Xinyu Zhan & Song Hong & Xinyi Tan & Tai-Sing Wu & Pei Xiong & Yun-Liang Soo & Molly Meng-Jung Li & Leiduan Hao & Liang Xu & Alex W. Robertson & Bingjun Xu & Ming Ya, 2024. "Hydrogen radical-boosted electrocatalytic CO2 reduction using Ni-partnered heteroatomic pairs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Yue, Pengtao & Kang, Zhongyin & Fu, Qian & Li, Jun & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2021. "Life cycle and economic analysis of chemicals production via electrolytic (bi)carbonate and gaseous CO2 conversion," Applied Energy, Elsevier, vol. 304(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14402-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.