IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v359y2024ics0306261924001314.html
   My bibliography  Save this article

A local electricity market mechanism for flexibility provision in industrial parks involving Heterogenous flexible loads

Author

Listed:
  • Turdybek, Balgynbek
  • Tostado-Véliz, Marcos
  • Mansouri, Seyed Amir
  • Rezaee Jordehi, Ahmad
  • Jurado, Francisco

Abstract

Industrial parks allow industries to share infrastructure and thus saving money, finally redounding in improving the economy of many countries worldwide. Given the objectives of carbon neutrality imposed by different entities, it results mandatory promoting energy efficiency in industrial parks. Aligning with such objective, encouraging industries to provide energy flexibility becomes essential. In the electricity sector, such flexibility can be provided through optimally managing local assets such as energy storage and flexible loads. However, flexibility provision should be promoted by implanting proper pricing mechanisms. This paper focuses on this issue by developing a local market clearing mechanism for industrial parks, whose main novelty redounds in the inclusion of a fair pricing mechanism through which industries are paid by flexibility provision. Different types of flexible loads are considered and modelled (i.e. curtailable, interruptible and deferrable), so that the new proposal is suitable for leveraging fully capabilities of industrial flexible loads. The whole pricing mechanism is raised as a bi-level game-based model, by which local energy and flexibility prices are revealed in a coordinated way. Challenges brought by the inclusion of binary variables (needed for modelling some types of flexible loads) are solved by proposing a solution algorithm based on the well-known Column & Constraint Generation Algorithm. The resulting optimization framework is Mixed Integer Linear Programming, being therefore solvable by off-the-shelf solvers. A case study is presented to validate the new proposal as well as highlight some important aspects related to local markets in industrial parks and its practical implantation.

Suggested Citation

  • Turdybek, Balgynbek & Tostado-Véliz, Marcos & Mansouri, Seyed Amir & Rezaee Jordehi, Ahmad & Jurado, Francisco, 2024. "A local electricity market mechanism for flexibility provision in industrial parks involving Heterogenous flexible loads," Applied Energy, Elsevier, vol. 359(C).
  • Handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924001314
    DOI: 10.1016/j.apenergy.2024.122748
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924001314
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mustika, Alyssa Diva & Rigo-Mariani, Rémy & Debusschere, Vincent & Pachurka, Amaury, 2022. "A two-stage management strategy for the optimal operation and billing in an energy community with collective self-consumption," Applied Energy, Elsevier, vol. 310(C).
    2. Zhou, Yuekuan, 2022. "Transition towards carbon-neutral districts based on storage techniques and spatiotemporal energy sharing with electrification and hydrogenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    4. Tostado-Véliz, Marcos & Hasanien, Hany M. & Jordehi, Ahmad Rezaee & Turky, Rania A. & Jurado, Francisco, 2023. "Risk-averse optimal participation of a DR-intensive microgrid in competitive clusters considering response fatigue," Applied Energy, Elsevier, vol. 339(C).
    5. Xu, Weiwei & Zhou, Dan & Huang, Xiaoming & Lou, Boliang & Liu, Dong, 2020. "Optimal allocation of power supply systems in industrial parks considering multi-energy complementarity and demand response," Applied Energy, Elsevier, vol. 275(C).
    6. Maes, Tom & Van Eetvelde, Greet & De Ras, Evelien & Block, Chantal & Pisman, Ann & Verhofstede, Bjorn & Vandendriessche, Frederik & Vandevelde, Lieven, 2011. "Energy management on industrial parks in Flanders," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1988-2005, May.
    7. S. Siddiqui & S. Gabriel, 2013. "An SOS1-Based Approach for Solving MPECs with a Natural Gas Market Application," Networks and Spatial Economics, Springer, vol. 13(2), pages 205-227, June.
    8. Yuehao Zhao & Ke Peng & Bingyin Xu & Huimin Li & Yuquan Liu & Xinhui Zhang, 2018. "Bilevel Optimal Dispatch Strategy for a Multi-Energy System of Industrial Parks by Considering Integrated Demand Response," Energies, MDPI, vol. 11(8), pages 1-21, July.
    9. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Fernández-Lobato, Lázuli & Jurado, Francisco, 2023. "Robust energy management in isolated microgrids with hydrogen storage and demand response," Applied Energy, Elsevier, vol. 345(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Mansouri, Seyed Amir & Zhou, Yuekuan & Jurado, Francisco, 2024. "A local electricity-hydrogen market model for industrial parks," Applied Energy, Elsevier, vol. 360(C).
    2. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Zhou, Yuekuan & Mansouri, Seyed Amir & Jurado, Francisco, 2024. "Best-case-aware planning of photovoltaic-battery systems for multi-mode charging stations," Renewable Energy, Elsevier, vol. 225(C).
    3. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    4. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    5. Li, Na & Okur, Özge, 2023. "Economic analysis of energy communities: Investment options and cost allocation," Applied Energy, Elsevier, vol. 336(C).
    6. Ivo Araújo & Leonel J. R. Nunes & David Patíño Vilas & António Curado, 2024. "Integrating Renewable Energy Produced by a Library Building on a University Campus in a Scenario of Collective Self-Consumption," Energies, MDPI, vol. 17(14), pages 1-17, July.
    7. Ahmad I. Elshamy & Engy Elshazly & Olugbenga Timo Oladinrin & Muhammad Qasim Rana & Rasha Said Abd el-Lateef & Seif Tarek El-Badry & Mahmoud Elthakaby & Ahmed M. R. Elbaz & Khaled Dewidar & Iman El-Ma, 2022. "Challenges and Opportunities for Integrating RE Systems in Egyptian Building Stocks," Energies, MDPI, vol. 15(23), pages 1-23, November.
    8. Liu, Zhengxuan & Zhou, Yuekuan & Yan, Jun & Tostado-Véliz, Marcos, 2023. "Frontier ocean thermal/power and solar PV systems for transformation towards net-zero communities," Energy, Elsevier, vol. 284(C).
    9. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    10. Thomas Kleinert & Martin Schmidt, 2023. "Why there is no need to use a big-M in linear bilevel optimization: a computational study of two ready-to-use approaches," Computational Management Science, Springer, vol. 20(1), pages 1-12, December.
    11. Morteza Nazari-Heris & Atefeh Tamaskani Esfehankalateh & Pouya Ifaei, 2023. "Hybrid Energy Systems for Buildings: A Techno-Economic-Enviro Systematic Review," Energies, MDPI, vol. 16(12), pages 1-15, June.
    12. Anastasovski, Aleksandar, 2023. "What is needed for transformation of industrial parks into potential positive energy industrial parks? A review," Energy Policy, Elsevier, vol. 173(C).
    13. Zhang, Nan & Zhang, Yumeng & Duan, Liqiang & Hou, Hongjuan & Zhang, Hanfei & Zhou, Yong & Bao, Weiwei, 2023. "Combining integrated solar combined cycle with wind-PV plants to provide stable power: Operation strategy and dynamic performance study," Energy, Elsevier, vol. 284(C).
    14. Xie, Rui & Wei, Wei & Li, Mingxuan & Dong, ZhaoYang & Mei, Shengwei, 2023. "Sizing capacities of renewable generation, transmission, and energy storage for low-carbon power systems: A distributionally robust optimization approach," Energy, Elsevier, vol. 263(PA).
    15. Lorenczik, Stefan & Panke, Timo, 2016. "Assessing market structures in resource markets — An empirical analysis of the market for metallurgical coal using various equilibrium models," Energy Economics, Elsevier, vol. 59(C), pages 179-187.
    16. Dezhou Kong & Jianru Jing & Tingyue Gu & Xuanyue Wei & Xingning Sa & Yimin Yang & Zhiang Zhang, 2023. "Theoretical Analysis of Integrated Community Energy Systems (ICES) Considering Integrated Demand Response (IDR): A Review of the System Modelling and Optimization," Energies, MDPI, vol. 16(10), pages 1-22, May.
    17. Avraam, Charalampos & Ceferino, Luis & Dvorkin, Yury, 2023. "Operational and economy-wide impacts of compound cyber-attacks and extreme weather events on electric power networks," Applied Energy, Elsevier, vol. 349(C).
    18. G. Constante-Flores & A. J. Conejo & S. Constante-Flores, 2022. "Solving certain complementarity problems in power markets via convex programming," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 465-491, October.
    19. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    20. Ahmed Abouaiana & Alessandra Battisti, 2022. "Multifunction Land Use to Promote Energy Communities in Mediterranean Region: Cases of Egypt and Italy," Land, MDPI, vol. 11(5), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924001314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.