Phase-resolved wave prediction with linear wave theory and physics-informed neural networks
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.121602
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Jincheng & Zhao, Xiaowei & Jin, Siya & Greaves, Deborah, 2022. "Phase-resolved real-time ocean wave prediction with quantified uncertainty based on variational Bayesian machine learning," Applied Energy, Elsevier, vol. 324(C).
- Halliday, J. Ross & Dorrell, David G. & Wood, Alan R., 2011. "An application of the Fast Fourier Transform to the short-term prediction of sea wave behaviour," Renewable Energy, Elsevier, vol. 36(6), pages 1685-1692.
- Ma, Yu & Sclavounos, Paul D. & Cross-Whiter, John & Arora, Dhiraj, 2018. "Wave forecast and its application to the optimal control of offshore floating wind turbine for load mitigation," Renewable Energy, Elsevier, vol. 128(PA), pages 163-176.
- Yang, Shaobo & Deng, Zegui & Li, Xingfei & Zheng, Chongwei & Xi, Lintong & Zhuang, Jucheng & Zhang, Zhenquan & Zhang, Zhiyou, 2021. "A novel hybrid model based on STL decomposition and one-dimensional convolutional neural networks with positional encoding for significant wave height forecast," Renewable Energy, Elsevier, vol. 173(C), pages 531-543.
- Li, Liang & Yuan, Zhiming & Gao, Yan, 2018. "Maximization of energy absorption for a wave energy converter using the deep machine learning," Energy, Elsevier, vol. 165(PA), pages 340-349.
- Zhang, Jincheng & Zhao, Xiaowei, 2021. "Three-dimensional spatiotemporal wind field reconstruction based on physics-informed deep learning," Applied Energy, Elsevier, vol. 300(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhao, Lingxiao & Li, Zhiyang & Pei, Yuguo & Qu, Leilei, 2024. "Disentangled Seasonal-Trend representation of improved CEEMD-GRU joint model with entropy-driven reconstruction to forecast significant wave height," Renewable Energy, Elsevier, vol. 226(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Daniel Clemente & Felipe Teixeira-Duarte & Paulo Rosa-Santos & Francisco Taveira-Pinto, 2023. "Advancements on Optimization Algorithms Applied to Wave Energy Assessment: An Overview on Wave Climate and Energy Resource," Energies, MDPI, vol. 16(12), pages 1-28, June.
- Pang, Junheng & Dong, Sheng, 2023. "A novel multivariable hybrid model to improve short and long-term significant wave height prediction," Applied Energy, Elsevier, vol. 351(C).
- Mahmoodi, Kumars & Nepomuceno, Erivelton & Razminia, Abolhassan, 2022. "Wave excitation force forecasting using neural networks," Energy, Elsevier, vol. 247(C).
- Zhang, Jincheng & Zhao, Xiaowei & Jin, Siya & Greaves, Deborah, 2022. "Phase-resolved real-time ocean wave prediction with quantified uncertainty based on variational Bayesian machine learning," Applied Energy, Elsevier, vol. 324(C).
- Li, Rui & Zhang, Jincheng & Zhao, Xiaowei & Wang, Daming & Hann, Martyn & Greaves, Deborah, 2023. "Phase-resolved real-time forecasting of three-dimensional ocean waves via machine learning and wave tank experiments," Applied Energy, Elsevier, vol. 348(C).
- Neshat, Mehdi & Nezhad, Meysam Majidi & Sergiienko, Nataliia Y. & Mirjalili, Seyedali & Piras, Giuseppe & Garcia, Davide Astiaso, 2022. "Wave power forecasting using an effective decomposition-based convolutional Bi-directional model with equilibrium Nelder-Mead optimiser," Energy, Elsevier, vol. 256(C).
- Chengcheng Gu & Hua Li, 2022. "Review on Deep Learning Research and Applications in Wind and Wave Energy," Energies, MDPI, vol. 15(4), pages 1-19, February.
- Tian, Runze & Kou, Peng & Zhang, Yuanhang & Mei, Mingyang & Zhang, Zhihao & Liang, Deliang, 2024. "Residual-connected physics-informed neural network for anti-noise wind field reconstruction," Applied Energy, Elsevier, vol. 357(C).
- Flores, Juan J. & Graff, Mario & Rodriguez, Hector, 2012. "Evolutive design of ARMA and ANN models for time series forecasting," Renewable Energy, Elsevier, vol. 44(C), pages 225-230.
- Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
- Shadmani, Alireza & Nikoo, Mohammad Reza & Gandomi, Amir H. & Chen, Mingjie & Nazari, Rouzbeh, 2024. "Advancements in optimizing wave energy converter geometry utilizing metaheuristic algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
- Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Zhang, Jincheng & Zhao, Xiaowei & Greaves, Deborah & Jin, Siya, 2023. "Modeling of a hinged-raft wave energy converter via deep operator learning and wave tank experiments," Applied Energy, Elsevier, vol. 341(C).
- Li, Rui & Zhang, Jincheng & Zhao, Xiaowei, 2022. "Dynamic wind farm wake modeling based on a Bilateral Convolutional Neural Network and high-fidelity LES data," Energy, Elsevier, vol. 258(C).
- Zheng, Zihao & Ali, Mumtaz & Jamei, Mehdi & Xiang, Yong & Abdulla, Shahab & Yaseen, Zaher Mundher & Farooque, Aitazaz A., 2023. "Multivariate data decomposition based deep learning approach to forecast one-day ahead significant wave height for ocean energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
- Li, Yunzhu & Liu, Tianyuan & Wang, Yuqi & Xie, Yonghui, 2022. "Deep learning based real-time energy extraction system modeling for flapping foil," Energy, Elsevier, vol. 246(C).
- Liang, Hongjian & Qin, Hao & Su, Haowen & Wen, Zhixuan & Mu, Lin, 2024. "Environmental-Sensing and adaptive optimization of wave energy converter based on deep reinforcement learning and computational fluid dynamics," Energy, Elsevier, vol. 297(C).
- Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
- Gao, Ruobin & Li, Ruilin & Hu, Minghui & Suganthan, Ponnuthurai Nagaratnam & Yuen, Kum Fai, 2023. "Dynamic ensemble deep echo state network for significant wave height forecasting," Applied Energy, Elsevier, vol. 329(C).
- Wu, Han & Gao, Xiao-Zhi & Heng, Jia-Ni, 2024. "Bio-multisensory-inspired gate-attention coordination model for forecasting short-term significant wave height," Energy, Elsevier, vol. 294(C).
More about this item
Keywords
Deterministic real-time wave prediction; Linear wave theory; Physics-informed neural networks; Autoregressive;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923009662. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.