IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v128y2018ipap163-176.html
   My bibliography  Save this article

Wave forecast and its application to the optimal control of offshore floating wind turbine for load mitigation

Author

Listed:
  • Ma, Yu
  • Sclavounos, Paul D.
  • Cross-Whiter, John
  • Arora, Dhiraj

Abstract

Control algorithms play an important role in energy capture and load mitigation for offshore floating wind turbines (OFWTs). One of the advanced and effective control techniques is the feedforward or model predictive control approach, which requires the forecast of incoming environment conditions. For OFWTs, wave loading is one of the dominant sources to excite structural responses. This study is thus motivated to develop forecasting algorithms for wave elevations and wave excitation forces with the purpose of applying feedforward controllers on OFWTs. Two forecasting algorithms, the approximate Prony Method based on ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) and SVM (Support Vector Machine) regression, are developed and validated using wave records from tank tests. Utilizing the forecasted wave elevations and wave excitation forces, a feedforward LQR controller is designed to mitigate structural loads of an OFWT system.

Suggested Citation

  • Ma, Yu & Sclavounos, Paul D. & Cross-Whiter, John & Arora, Dhiraj, 2018. "Wave forecast and its application to the optimal control of offshore floating wind turbine for load mitigation," Renewable Energy, Elsevier, vol. 128(PA), pages 163-176.
  • Handle: RePEc:eee:renene:v:128:y:2018:i:pa:p:163-176
    DOI: 10.1016/j.renene.2018.05.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118305809
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.05.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jincheng & Zhao, Xiaowei & Jin, Siya & Greaves, Deborah, 2022. "Phase-resolved real-time ocean wave prediction with quantified uncertainty based on variational Bayesian machine learning," Applied Energy, Elsevier, vol. 324(C).
    2. Wakui, Tetsuya & Nagamura, Atsushi & Yokoyama, Ryohei, 2021. "Stabilization of power output and platform motion of a floating offshore wind turbine-generator system using model predictive control based on previewed disturbances," Renewable Energy, Elsevier, vol. 173(C), pages 105-127.
    3. Liu, Yue & Zhang, Xiantao & Dong, Qing & Chen, Gang & Li, Xin, 2024. "Phase-resolved wave prediction with linear wave theory and physics-informed neural networks," Applied Energy, Elsevier, vol. 355(C).
    4. Zhang, Zhenquan & Qin, Jian & Wang, Dengshuai & Wang, Wei & Liu, Yanjun & Xue, Gang, 2023. "Research on wave excitation estimators for arrays of wave energy converters," Energy, Elsevier, vol. 264(C).
    5. Li, Rui & Zhang, Jincheng & Zhao, Xiaowei & Wang, Daming & Hann, Martyn & Greaves, Deborah, 2023. "Phase-resolved real-time forecasting of three-dimensional ocean waves via machine learning and wave tank experiments," Applied Energy, Elsevier, vol. 348(C).
    6. Daniel Clemente & Felipe Teixeira-Duarte & Paulo Rosa-Santos & Francisco Taveira-Pinto, 2023. "Advancements on Optimization Algorithms Applied to Wave Energy Assessment: An Overview on Wave Climate and Energy Resource," Energies, MDPI, vol. 16(12), pages 1-28, June.
    7. Mahmoodi, Kumars & Nepomuceno, Erivelton & Razminia, Abolhassan, 2022. "Wave excitation force forecasting using neural networks," Energy, Elsevier, vol. 247(C).
    8. Shah, Kamran Ali & Meng, Fantai & Li, Ye & Nagamune, Ryozo & Zhou, Yarong & Ren, Zhengru & Jiang, Zhiyu, 2021. "A synthesis of feasible control methods for floating offshore wind turbine system dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Liang, Yi & Niu, Dongxiao & Hong, Wei-Chiang, 2019. "Short term load forecasting based on feature extraction and improved general regression neural network model," Energy, Elsevier, vol. 166(C), pages 653-663.
    10. Doubrawa, Paula & Churchfield, Matthew J. & Godvik, Marte & Sirnivas, Senu, 2019. "Load response of a floating wind turbine to turbulent atmospheric flow," Applied Energy, Elsevier, vol. 242(C), pages 1588-1599.
    11. Joannes Olondriz & Josu Jugo & Iker Elorza & Santiago Alonso-Quesada and Aron Pujana-Arrese, 2019. "A Feedback Control Loop Optimisation Methodology for Floating Offshore Wind Turbines," Energies, MDPI, vol. 12(18), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:128:y:2018:i:pa:p:163-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.