IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v352y2023ics0306261923012928.html
   My bibliography  Save this article

Design and performance investigation of a novel self-adaptive radiative cooling module for thermal regulation in buildings

Author

Listed:
  • Gong, Quan
  • Lu, Lin
  • Chen, Jianheng

Abstract

Daytime radiative cooling utilizes the process of reflecting sunlight and radiating heat through the atmospheric transparent window (8–13 μm) to achieve spontaneous cooling of an object. However, the existing challenge lies in the disparity between the cooling supply and demand, necessitating the development of self-regulating radiative cooling. This study introduces a novel design that combines paraffin wax with a radiative cooler, leading to the development of a self-adaptive radiative cooler (SRC) with two distinct modes based on dynamic optical properties. The spectral properties of the four SRCs were calculated by Fresnel equation, and it was found that the SRC possessed the ability to optimally absorb solar energy (Δα = 0.322) and automatically adjusted their thermal emittance (Δε = 0.552) in response to ambient temperature changes, facilitated by the liquid-solid transition, especially for Case 1. Therefore, the novel SRCs demonstrate a unique behaviour: they are warmer than static radiative coolers (ΔT = 3 K) in cold ambient conditions, while maintaining high cooling power in hot environments. Through extensive simulations for various cities and climates, this study demonstrates the superior energy-saving performance of the SRCs in building thermal regulation compared to that of static radiative coolers (Δδ1 = 9.6%).

Suggested Citation

  • Gong, Quan & Lu, Lin & Chen, Jianheng, 2023. "Design and performance investigation of a novel self-adaptive radiative cooling module for thermal regulation in buildings," Applied Energy, Elsevier, vol. 352(C).
  • Handle: RePEc:eee:appene:v:352:y:2023:i:c:s0306261923012928
    DOI: 10.1016/j.apenergy.2023.121928
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923012928
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121928?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su, Weiguang & Cai, Pei & Kang, Ruigeng & Wang, Li & Kokogiannakis, Georgios & Chen, Jun & Gao, Liying & Li, Anqing & Xu, Chonghai, 2022. "Development of temperature-responsive transmission switch film (TRTSF) using phase change material for self-adaptive radiative cooling," Applied Energy, Elsevier, vol. 322(C).
    2. Yucan Peng & Jun Chen & Alex Y. Song & Peter B. Catrysse & Po-Chun Hsu & Lili Cai & Bofei Liu & Yangying Zhu & Guangmin Zhou & David S. Wu & Hye Ryoung Lee & Shanhui Fan & Yi Cui, 2018. "Nanoporous polyethylene microfibres for large-scale radiative cooling fabric," Nature Sustainability, Nature, vol. 1(2), pages 105-112, February.
    3. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    4. Eli A. Goldstein & Aaswath P. Raman & Shanhui Fan, 2017. "Sub-ambient non-evaporative fluid cooling with the sky," Nature Energy, Nature, vol. 2(9), pages 1-7, September.
    5. Dong, Yan & Zou, Yanan & Li, Xiang & Wang, Fuqiang & Cheng, Ziming & Meng, Weifeng & Chen, Lingling & Xiang, Yang & Wang, Tong & Yan, Yuying, 2023. "Introducing masking layer for daytime radiative cooling coating to realize high optical performance, thin thickness, and excellent durability in long-term outdoor application," Applied Energy, Elsevier, vol. 344(C).
    6. Bu, Fan & Yan, Da & Tan, Gang & Sun, Hongsan & An, Jingjing, 2022. "Systematically incorporating spectrum-selective radiative cooling into building performance simulation: Numerical integration method and experimental validation," Applied Energy, Elsevier, vol. 312(C).
    7. Zhen Chen & Linxiao Zhu & Aaswath Raman & Shanhui Fan, 2016. "Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle," Nature Communications, Nature, vol. 7(1), pages 1-5, December.
    8. Kong, Xiangfei & Fu, Ying & Yuan, Jianjuan, 2023. "Novel flexible phase change materials with high emissivity, low thermal conductivity and mechanically robust for thermal management in outdoor environment," Applied Energy, Elsevier, vol. 348(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Bin & Xuan, Qingdong & Xu, Chengfeng & Hu, Mingke & Dabwan, Yousef N. & Pei, Gang, 2023. "Considerations of passive radiative cooling," Renewable Energy, Elsevier, vol. 219(P2).
    2. Chen, Jianheng & Lu, Lin & Gong, Quan, 2023. "Techno-economic and environmental evaluation on radiative sky cooling-based novel passive envelope strategies to achieve building sustainability and carbon neutrality," Applied Energy, Elsevier, vol. 349(C).
    3. Wong, Ross Y.M. & Tso, C.Y. & Jeong, S.Y. & Fu, S.C. & Chao, Christopher Y.H., 2023. "Critical sky temperatures for passive radiative cooling," Renewable Energy, Elsevier, vol. 211(C), pages 214-226.
    4. Peoples, Joseph & Hung, Yu-Wei & Li, Xiangyu & Gallagher, Daniel & Fruehe, Nathan & Pottschmidt, Mason & Breseman, Cole & Adams, Conrad & Yuksel, Anil & Braun, James & Horton, W. Travis & Ruan, Xiulin, 2022. "Concentrated radiative cooling," Applied Energy, Elsevier, vol. 310(C).
    5. Wong, Ross Y.M. & Tso, C.Y. & Chao, Christopher Y.H., 2021. "Thermo-radiative energy conversion efficiency of a passive radiative fluid cooling system," Renewable Energy, Elsevier, vol. 180(C), pages 700-711.
    6. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Bu, Fan & Yan, Da & Tan, Gang & Sun, Hongsan & An, Jingjing, 2023. "Acceleration algorithms for long-wavelength radiation integral in the annual simulation of radiative cooling in buildings," Renewable Energy, Elsevier, vol. 202(C), pages 255-269.
    8. Liu, Junwei & Zhang, Ji & Zhang, Debao & Jiao, Shifei & Xing, Jincheng & Tang, Huajie & Zhang, Ying & Li, Shuai & Zhou, Zhihua & Zuo, Jian, 2020. "Sub-ambient radiative cooling with wind cover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    9. Xueke Wu & Jinlei Li & Fei Xie & Xun-En Wu & Siming Zhao & Qinyuan Jiang & Shiliang Zhang & Baoshun Wang & Yunrui Li & Di Gao & Run Li & Fei Wang & Ya Huang & Yanlong Zhao & Yingying Zhang & Wei Li & , 2024. "A dual-selective thermal emitter with enhanced subambient radiative cooling performance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    11. Li, Hao & Zhang, Ji & Liu, Xiaohua & Zhang, Tao, 2022. "Comparative investigation of energy-saving potential and technical economy of rooftop radiative cooling and photovoltaic systems," Applied Energy, Elsevier, vol. 328(C).
    12. Li, Haoran & Zhang, Kai & Shi, Zijie & Jiang, Kaiyu & Wu, Bingyang & Ye, Peiliang, 2023. "Cooling benefit of implementing radiative cooling on a city-scale," Renewable Energy, Elsevier, vol. 212(C), pages 372-381.
    13. Zhao, Bin & Liu, Jie & Hu, Mingke & Ao, Xianze & Li, Lanxin & Xuan, Qingdong & Pei, Gang, 2023. "Performance analysis of a broadband selective absorber/emitter for hybrid utilization of solar thermal and radiative cooling," Renewable Energy, Elsevier, vol. 205(C), pages 763-771.
    14. Yan, Tian & Xu, Dawei & Meng, Jing & Xu, Xinhua & Yu, Zhongyi & Wu, Huijun, 2024. "A review of radiative sky cooling technology and its application in building systems," Renewable Energy, Elsevier, vol. 220(C).
    15. Xu, Weiping & Gong, Sihong & Wang, Ningsheng & Zhao, Wenbo & Yin, Hongle & Yang, Ronggui & Yin, Xiaobo & Tan, Gang, 2023. "Temperature reduction and energy-saving analysis in grain storage: Field application of radiative cooling technology to grain storage warehouse," Renewable Energy, Elsevier, vol. 218(C).
    16. Liu, Junwei & Yuan, Jianjuan & Zhang, Ji & Tang, Huajie & Huang, Ke & Xing, Jincheng & Zhang, Debao & Zhou, Zhihua & Zuo, Jian, 2021. "Performance evaluation of various strategies to improve sub-ambient radiative sky cooling," Renewable Energy, Elsevier, vol. 169(C), pages 1305-1316.
    17. Jia, Linrui & Lu, Lin & Chen, Jianheng, 2023. "Exploring the cooling potential maps of a radiative sky cooling radiator-assisted ground source heat pump system in China," Applied Energy, Elsevier, vol. 349(C).
    18. Ding, Yitong & Zhong, Chengxi & Yang, Fengying & Kang, Zeyang & Li, Bowen & Duan, Yuhao & Zhao, Zhiheng & Song, Xudong & Xiong, Ying & Guo, Shaoyun, 2023. "Low energy consumption thermochromic smart windows with flexibly regulated photothermal gain and radiation cooling," Applied Energy, Elsevier, vol. 348(C).
    19. Dong, Yan & Zhang, Xinping & Chen, Lingling & Meng, Weifeng & Wang, Cunhai & Cheng, Ziming & Liang, Huaxu & Wang, Fuqiang, 2023. "Progress in passive daytime radiative cooling: A review from optical mechanism, performance test, and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Xu, Bin & Fei, Yue & Chen, Xing-ni & Xie, Xing & Pei, Gang, 2024. "Influence of selective infrared emissivity design on the radiative cooling effect of windows: Laws exploration based on transient analysis," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:352:y:2023:i:c:s0306261923012928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.