IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v349y2023ics0306261923010668.html
   My bibliography  Save this article

Optimal planning of energy storage system under the business model of cloud energy storage considering system inertia support and the electricity-heat coordination

Author

Listed:
  • Yang, Xinyi
  • Li, Yaowang
  • Liu, Ziwen
  • Zhang, Shixu
  • Liu, Yuliang
  • Zhang, Ning

Abstract

As the penetration rate of renewable energy increases in the electric power system, the issues of renewable power curtailment and system inertia shortage become more severe. Innovative solutions such as Cloud Energy Storage (CES) can be employed to address this challenge. However, the energy storage resources aggregated by the traditional CES business model mainly concentrate on Electrical Energy Storage (EES), which is still limited and expensive. It necessitates the exploration of new approaches to enhance the flexibility and cost-effectiveness of energy storage utilization, in which using District Heating System (DHS) as an equivalent energy storage resource of the power system is an effective method. Therefore, this paper proposes an optimal planning strategy of energy storage system under the CES model considering inertia support and electricity-heat coordination. Firstly, the system components and business model of the CES are described, and the framework of energy storage planning problem from the perspective of CES operator is formulated. Then the evaluation methods of energy storage utilization demand from CES users are proposed, including the evaluation of the renewable power curtailment, system minimum inertia requirement, and the equivalent energy storage ability of DHS. Based on this evaluation results, a bi-layer optimal energy storage planning model for the CES operator is established, where the upper-layer model determines the installed capacity of lithium (Li-ion) battery station and the lower-layer model determines the optimal schedules of the CES system. The numerical tests based on the operation profile of a typical city in China are carried out to demonstrate the effectiveness of the proposed method. The simulation result shows that the annual profit of the CES system can be improved by 15.26% after installing the energy storage system whose capacity is determined by the proposed method.

Suggested Citation

  • Yang, Xinyi & Li, Yaowang & Liu, Ziwen & Zhang, Shixu & Liu, Yuliang & Zhang, Ning, 2023. "Optimal planning of energy storage system under the business model of cloud energy storage considering system inertia support and the electricity-heat coordination," Applied Energy, Elsevier, vol. 349(C).
  • Handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923010668
    DOI: 10.1016/j.apenergy.2023.121702
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923010668
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121702?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yaowang & Miao, Shihong & Luo, Xing & Yin, Binxin & Han, Ji & Wang, Jihong, 2020. "Dynamic modelling and techno-economic analysis of adiabatic compressed air energy storage for emergency back-up power in supporting microgrid," Applied Energy, Elsevier, vol. 261(C).
    2. Liu, Jingkun & Zhang, Ning & Kang, Chongqing & Kirschen, Daniel & Xia, Qing, 2017. "Cloud energy storage for residential and small commercial consumers: A business case study," Applied Energy, Elsevier, vol. 188(C), pages 226-236.
    3. Ma, Mingtao & Huang, Huijun & Song, Xiaoling & Peña-Mora, Feniosky & Zhang, Zhe & Chen, Jie, 2022. "Optimal sizing and operations of shared energy storage systems in distribution networks: A bi-level programming approach," Applied Energy, Elsevier, vol. 307(C).
    4. Rappaport, Ron D. & Miles, John, 2017. "Cloud energy storage for grid scale applications in the UK," Energy Policy, Elsevier, vol. 109(C), pages 609-622.
    5. Pan, Zhaoguang & Guo, Qinglai & Sun, Hongbin, 2017. "Feasible region method based integrated heat and electricity dispatch considering building thermal inertia," Applied Energy, Elsevier, vol. 192(C), pages 395-407.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Yongji & Wu, Qiuwei & Li, Changgang & Jiao, Wenshu & Tan, Jin, 2024. "Chance-constrained optimal sizing of BESS with emergency load shedding for frequency stability," Applied Energy, Elsevier, vol. 367(C).
    2. Liang, Weikun & Lin, Shunjiang & Liu, Mingbo & Sheng, Xuan & Pan, Yue, 2024. "Risk-based distributionally robust optimal dispatch for multiple cascading failures in regional integrated energy system using surrogate modeling," Applied Energy, Elsevier, vol. 353(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Ouzhu & Ding, Tao & Zhang, Xiaosheng & Mu, Chenggang & He, Xinran & Zhang, Hongji & Jia, Wenhao & Ma, Zhoujun, 2023. "A shared energy storage business model for data center clusters considering renewable energy uncertainties," Renewable Energy, Elsevier, vol. 202(C), pages 1273-1290.
    2. Qibo He & Changming Chen & Xin Fu & Shunjiang Yu & Long Wang & Zhenzhi Lin, 2024. "Joint Planning Method of Shared Energy Storage and Multi-Energy Microgrids Based on Dynamic Game with Perfect Information," Energies, MDPI, vol. 17(19), pages 1-20, September.
    3. Zhao, Bingxu & Duan, Pengfei & Fen, Mengdan & Xue, Qingwen & Hua, Jing & Yang, Zhuoqiang, 2023. "Optimal operation of distribution networks and multiple community energy prosumers based on mixed game theory," Energy, Elsevier, vol. 278(PB).
    4. Bian, Yifan & Xie, Lirong & Ye, Jiahao & Ma, Lan, 2024. "A new shared energy storage business model for data center clusters considering energy storage degradation," Renewable Energy, Elsevier, vol. 225(C).
    5. Lai, Kexing & Illindala, Mahesh S., 2018. "A distributed energy management strategy for resilient shipboard power system," Applied Energy, Elsevier, vol. 228(C), pages 821-832.
    6. Corentin Jankowiak & Aggelos Zacharopoulos & Caterina Brandoni & Patrick Keatley & Paul MacArtain & Neil Hewitt, 2019. "The Role of Domestic Integrated Battery Energy Storage Systems for Electricity Network Performance Enhancement," Energies, MDPI, vol. 12(20), pages 1-27, October.
    7. Puranen, Pietari & Kosonen, Antti & Ahola, Jero, 2021. "Techno-economic viability of energy storage concepts combined with a residential solar photovoltaic system: A case study from Finland," Applied Energy, Elsevier, vol. 298(C).
    8. Jungsub Sim & Minsoo Kim & Dongjoo Kim & Hongseok Kim, 2021. "Cloud Energy Storage System Operation with Capacity P2P Transaction," Energies, MDPI, vol. 14(2), pages 1-13, January.
    9. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    10. Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2022. "A techno-economic analysis of small-scale trigenerative compressed air energy storage system," Energy, Elsevier, vol. 239(PA).
    11. Fu, Xintao & Zhang, Yilun & Liu, Xu & Liu, Zhan, 2024. "Stable power supply system consisting of solar, wind and liquid carbon dioxide energy storage," Renewable Energy, Elsevier, vol. 221(C).
    12. Huang, Jinbo & Li, Zhigang & Wu, Q.H., 2017. "Coordinated dispatch of electric power and district heating networks: A decentralized solution using optimality condition decomposition," Applied Energy, Elsevier, vol. 206(C), pages 1508-1522.
    13. Jin, Hongyang & Li, Zhengshuo & Sun, Hongbin & Guo, Qinglai & Chen, Runze & Wang, Bin, 2017. "A robust aggregate model and the two-stage solution method to incorporate energy intensive enterprises in power system unit commitment," Applied Energy, Elsevier, vol. 206(C), pages 1364-1378.
    14. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Effects of the operation regulation modes of district heating system on an integrated heat and power dispatch system for wind power integration," Applied Energy, Elsevier, vol. 230(C), pages 1126-1139.
    15. Jingjing Zhai & Xiaobei Wu & Zihao Li & Shaojie Zhu & Bo Yang & Haoming Liu, 2021. "Day-Ahead and Intra-Day Collaborative Optimized Operation among Multiple Energy Stations," Energies, MDPI, vol. 14(4), pages 1-33, February.
    16. Soha, Tamás & Munkácsy, Béla & Harmat, Ádám & Csontos, Csaba & Horváth, Gergely & Tamás, László & Csüllög, Gábor & Daróczi, Henriett & Sáfián, Fanni & Szabó, Mária, 2017. "GIS-based assessment of the opportunities for small-scale pumped hydro energy storage in middle-mountain areas focusing on artificial landscape features," Energy, Elsevier, vol. 141(C), pages 1363-1373.
    17. Baohong Jin & Zhichao Liu & Yichuan Liao, 2023. "Exploring the Impact of Regional Integrated Energy Systems Performance by Energy Storage Devices Based on a Bi-Level Dynamic Optimization Model," Energies, MDPI, vol. 16(6), pages 1-21, March.
    18. Sun, Weijia & Wang, Qi & Ye, Yujian & Tang, Yi, 2022. "Unified modelling of gas and thermal inertia for integrated energy system and its application to multitype reserve procurement," Applied Energy, Elsevier, vol. 305(C).
    19. Mei, Fei & Zhang, Jiatang & Lu, Jixiang & Lu, Jinjun & Jiang, Yuhan & Gu, Jiaqi & Yu, Kun & Gan, Lei, 2021. "Stochastic optimal operation model for a distributed integrated energy system based on multiple-scenario simulations," Energy, Elsevier, vol. 219(C).
    20. Hao, Ling & Wei, Mingshan & Xu, Fei & Yang, Xiaochen & Meng, Jia & Song, Panpan & Min, Yong, 2020. "Study of operation strategies for integrating ice-storage district cooling systems into power dispatch for large-scale hydropower utilization," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923010668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.