IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v339y2023ics0306261923003823.html
   My bibliography  Save this article

Privacy-preserving demand response of aggregated residential load

Author

Listed:
  • Yu, Heyang
  • Zhang, Jingchen
  • Ma, Junchao
  • Chen, Changyu
  • Geng, Guangchao
  • Jiang, Quanyuan

Abstract

The randomness, dispersion, and small capacity of residential load make it difficult to participate in incentive-based demand response. Meanwhile, the rapid development of Internet of things makes it possible to sense and regulate power-consuming behavior of most residents. Load aggregator (LA) has become a feasible scheme as an intermediate form in this situation. It improves the bargaining power of residential load in the market, making it change from price-taker to price-maker, to obtain more profit. However, privacy disclosure is the primary concern when residents directly communicate with LA. A distributed demand response (DR) approach for aggregated residential load is proposed to maximize the benefit of LA while preserving the privacy of residents. Based on a mixed-integer model, a two-layer framework between LA and residents is developed to solve the model above based on the sharing alternating direction method of multipliers. The privacy of residents is preserved by interacting insensitive information between the two layers. The proposed approach is deployed and tested in a real-world residential building with 27 apartments. The results demonstrate that this scheme can realize effective participation of large scale residential load in incentive-based DR on the premise of preserving privacy, which verifies the feasibility and effectiveness of the scheme.

Suggested Citation

  • Yu, Heyang & Zhang, Jingchen & Ma, Junchao & Chen, Changyu & Geng, Guangchao & Jiang, Quanyuan, 2023. "Privacy-preserving demand response of aggregated residential load," Applied Energy, Elsevier, vol. 339(C).
  • Handle: RePEc:eee:appene:v:339:y:2023:i:c:s0306261923003823
    DOI: 10.1016/j.apenergy.2023.121018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923003823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Xiaoxing & Li, Kangping & Xu, Hanchen & Wang, Fei & Zhou, Zhenyu & Zhang, Yagang, 2020. "Fundamentals and business model for resource aggregator of demand response in electricity markets," Energy, Elsevier, vol. 204(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muchun Wan & Heyang Yu & Yingning Huo & Kan Yu & Quanyuan Jiang & Guangchao Geng, 2024. "Feasibility and Challenges for Vehicle-to-Grid in Electricity Market: A Review," Energies, MDPI, vol. 17(3), pages 1-23, January.
    2. Li, Li & Fan, Shuai & Xiao, Jucheng & Zhou, Huan & Shen, Yu & He, Guangyu, 2024. "Fair trading strategy in multi-energy systems considering design optimization and demand response based on consumer psychology," Energy, Elsevier, vol. 306(C).
    3. Yan, Haoran & Hou, Hongjuan & Deng, Min & Si, Lengge & Wang, Xi & Hu, Eric & Zhou, Rhonin, 2024. "Stackelberg game theory based model to guide users’ energy use behavior, with the consideration of flexible resources and consumer psychology, for an integrated energy system," Energy, Elsevier, vol. 288(C).
    4. Yan, Yi & Liu, Mingqi & Tian, Chongyi & Li, Ji & Li, Ke, 2024. "Multi-layer game theory based operation optimisation of ICES considering improved independent market participant models and dedicated distributed algorithms," Applied Energy, Elsevier, vol. 373(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    2. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    3. He, Yan & Zhang, Hongli & Dong, Yingchao & Wang, Cong & Ma, Ping, 2024. "Residential net load interval prediction based on stacking ensemble learning," Energy, Elsevier, vol. 296(C).
    4. Silvestri, Luca & De Santis, Michele, 2024. "Renewable-based load shifting system for demand response to enhance energy-economic-environmental performance of industrial enterprises," Applied Energy, Elsevier, vol. 358(C).
    5. Liu, Jia & Zeng, Peter Pingliang & Xing, Hao & Li, Yalou & Wu, Qiuwei, 2020. "Hierarchical duality-based planning of transmission networks coordinating active distribution network operation," Energy, Elsevier, vol. 213(C).
    6. Huang, Sen & Ye, Yunyang & Wu, Di & Zuo, Wangda, 2021. "An assessment of power flexibility from commercial building cooling systems in the United States," Energy, Elsevier, vol. 221(C).
    7. Annala, Salla & Ruggiero, Salvatore & Kangas, Hanna-Liisa & Honkapuro, Samuli & Ohrling, Tiina, 2022. "Impact of home market on business development and internationalization of demand response firms," Energy, Elsevier, vol. 242(C).
    8. Lankeshwara, Gayan & Sharma, Rahul & Yan, Ruifeng & Saha, Tapan K., 2022. "A hierarchical control scheme for residential air-conditioning loads to provide real-time market services under uncertainties," Energy, Elsevier, vol. 250(C).
    9. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    10. Chen, Xiaodong & Ge, Xinxin & Sun, Rongfu & Wang, Fei & Mi, Zengqiang, 2024. "A SVM based demand response capacity prediction model considering internal factors under composite program," Energy, Elsevier, vol. 300(C).
    11. Wang, Fei & Ge, Xinxin & Yang, Peng & Li, Kangping & Mi, Zengqiang & Siano, Pierluigi & Duić, Neven, 2020. "Day-ahead optimal bidding and scheduling strategies for DER aggregator considering responsive uncertainty under real-time pricing," Energy, Elsevier, vol. 213(C).
    12. Marina Bertolini & Gregorio Morosinotto, 2023. "Business Models for Energy Community in the Aggregator Perspective: State of the Art and Research Gaps," Energies, MDPI, vol. 16(11), pages 1-26, June.
    13. Tang, Hong & Wang, Shengwei, 2022. "Multi-level optimal dispatch strategy and profit-sharing mechanism for unlocking energy flexibilities of non-residential building clusters in electricity markets of multiple flexibility services," Renewable Energy, Elsevier, vol. 201(P1), pages 35-45.
    14. Xiangchu Xu & Zewei Zhan & Zengqiang Mi & Ling Ji, 2023. "An Optimized Decision Model for Electric Vehicle Aggregator Participation in the Electricity Market Based on the Stackelberg Game," Sustainability, MDPI, vol. 15(20), pages 1-26, October.
    15. Han, Rushuai & Hu, Qinran & Cui, Hantao & Chen, Tao & Quan, Xiangjun & Wu, Zaijun, 2022. "An optimal bidding and scheduling method for load service entities considering demand response uncertainty," Applied Energy, Elsevier, vol. 328(C).
    16. Xu, Bo & Wang, Jiexin & Guo, Mengyuan & Lu, Jiayu & Li, Gehui & Han, Liang, 2021. "A hybrid demand response mechanism based on real-time incentive and real-time pricing," Energy, Elsevier, vol. 231(C).
    17. Pinto, Edwin S. & Gronier, Timothé & Franquet, Erwin & Serra, Luis M., 2023. "Opportunities and economic assessment for a third-party delivering electricity, heat and cold to residential buildings," Energy, Elsevier, vol. 272(C).
    18. Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
    19. Đorđe Lazović & Željko Đurišić, 2023. "Advanced Flexibility Support through DSO-Coordinated Participation of DER Aggregators in the Balancing Market," Energies, MDPI, vol. 16(8), pages 1-26, April.
    20. Su, Huai & Chi, Lixun & Zio, Enrico & Li, Zhenlin & Fan, Lin & Yang, Zhe & Liu, Zhe & Zhang, Jinjun, 2021. "An integrated, systematic data-driven supply-demand side management method for smart integrated energy systems," Energy, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:339:y:2023:i:c:s0306261923003823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.