IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v338y2023ics0306261923002933.html
   My bibliography  Save this article

Expanded graphite (EG)/Ni@Melamine foam (MF)/EG sandwich-structured flexible bipolar plate with excellent electrical conductivity, mechanical properties, and gas permeability

Author

Listed:
  • Mao, Xiaoyu
  • Li, Yifan
  • Hu, Xiufeng
  • Tian, Runping
  • Yu, Wei

Abstract

The bipolar plate is an important component of the fuel cell. Composite graphite-based bipolar plates with adjustable properties are potential candidates to realize the high performance of the cell. However, simultaneously improving the electrical and mechanical properties of the plate is always the focus and difficulty of the research since they tend to behave with mutual inhibition. Here in this work, we report a laminating strategy to prepare composite bipolar plates with the (EG)/Ni@Melamine foam (MF)/EG sandwiched structure. The highly porous MF sponge provides enough space for epoxy immersion and the Nickel plating improves the electrical conductivity. Both the electrical conductivity (320 S/cm) and the flexural strength (56 MPa) are improved compared to the original EG plate. The enriched resin amount in the intermedium layer also ensures lower gas permeability (2.16 × 10−9 cm3cm−2s−1). In addition, owing to the residual resin on the surface of the developed plate, there is a smaller, indicating better wettability. Further practical performance tests proved that the developed plate has favorable performance under actual working conditions compared to commercialized carbon graphite plate.

Suggested Citation

  • Mao, Xiaoyu & Li, Yifan & Hu, Xiufeng & Tian, Runping & Yu, Wei, 2023. "Expanded graphite (EG)/Ni@Melamine foam (MF)/EG sandwich-structured flexible bipolar plate with excellent electrical conductivity, mechanical properties, and gas permeability," Applied Energy, Elsevier, vol. 338(C).
  • Handle: RePEc:eee:appene:v:338:y:2023:i:c:s0306261923002933
    DOI: 10.1016/j.apenergy.2023.120929
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923002933
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guan, Dong & Pan, Biyu & Chen, Zhen & Li, Jing & Shen, Hui & Pang, Huan, 2023. "Quantitative modeling and bio-inspired optimization the clamping load on the bipolar plate in PEMFC," Energy, Elsevier, vol. 263(PD).
    2. Hu, Bin & He, Guangjian & Chang, Fulu & Yang, Han & Cao, Xianwu & Yin, Xiaochun, 2022. "Low filler and highly conductive composite bipolar plates with synergistic segregated structure for enhanced proton exchange membrane fuel cell performance," Energy, Elsevier, vol. 251(C).
    3. Chen, Chen-Yu & Su, Sheng-Chun, 2018. "Effects of assembly torque on a proton exchange membrane fuel cell with stamped metallic bipolar plates," Energy, Elsevier, vol. 159(C), pages 440-447.
    4. Baroutaji, Ahmad & Wilberforce, Tabbi & Ramadan, Mohamad & Olabi, Abdul Ghani, 2019. "Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 31-40.
    5. Wenkai Li & Haodong Zeng & Tao Peng & Ziteng Gao & Zhiyong Xie, 2022. "A High Conductive Composite Bipolar Plate with Conductive Network Constructed by Chemical Vapor Deposition," Energies, MDPI, vol. 15(14), pages 1-16, July.
    6. Xiong, Kangning & Wu, Wei & Wang, Shuangfeng & Zhang, Lin, 2021. "Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review," Applied Energy, Elsevier, vol. 301(C).
    7. Wilberforce, Tabbi & El Hassan, Zaki & Ogungbemi, Emmanuel & Ijaodola, O. & Khatib, F.N. & Durrant, A. & Thompson, J. & Baroutaji, A. & Olabi, A.G., 2019. "A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 236-260.
    8. Liao, Weineng & Jiang, Fengjing & Zhang, Yue & Zhou, Xinjie & He, Zongqi, 2020. "Highly-conductive composite bipolar plate based on ternary carbon materials and its performance in redox flow batteries," Renewable Energy, Elsevier, vol. 152(C), pages 1310-1316.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Yang, Xi & Wang, Zhuo & Zhang, Shuanyang & Cao, Jing & Fang, Haoyan & Li, Qiming, 2024. "Full-scale three-dimensional simulation of air cooling metal bipolar plate proton exchange membrane fuel cell stack considering a non-isothermal multiphase model," Applied Energy, Elsevier, vol. 357(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Ke & Wang, Yimin & Ding, Yuhang & Xu, Hongjie & Mueller-Welt, Philip & Stuermlinger, Tobias & Bause, Katharina & Ehrmann, Christopher & Weinmann, Hannes W. & Schaefer, Jens & Fleischer, Juergen , 2022. "Assembly techniques for proton exchange membrane fuel cell stack: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Lu, Guolong & Fan, Wenxuan & Lu, Dafeng & Zhao, Taotao & Wu, Qianqian & Liu, Mingxin & Liu, Zhenning, 2024. "Lung-inspired hybrid flow field to enhance PEMFC performance: A case of dual optimization by response surface and artificial intelligence," Applied Energy, Elsevier, vol. 355(C).
    3. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    4. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    5. Ji-Seong Kim & Keon-Soo Kim & Do-Young Kim & Min Heo & Kap-Seung Choi, 2022. "Effect of Rotational Control for Accelerating Water Discharge on the Performance of a Circular Polymer Electrolyte Membrane Fuel Cell," Energies, MDPI, vol. 15(8), pages 1-14, April.
    6. Abdul Ghani Olabi & Tabbi Wilberforce & Abdulrahman Alanazi & Parag Vichare & Enas Taha Sayed & Hussein M. Maghrabie & Khaled Elsaid & Mohammad Ali Abdelkareem, 2022. "Novel Trends in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 15(14), pages 1-35, July.
    7. Saadat, Nazmus & Dhakal, Hom N. & Tjong, Jimi & Jaffer, Shaffiq & Yang, Weimin & Sain, Mohini, 2021. "Recent advances and future perspectives of carbon materials for fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Hossein Pourrahmani & Majid Siavashi & Adel Yavarinasab & Mardit Matian & Nazanin Chitgar & Ligang Wang & Jan Van herle, 2022. "A Review on the Long-Term Performance of Proton Exchange Membrane Fuel Cells: From Degradation Modeling to the Effects of Bipolar Plates, Sealings, and Contaminants," Energies, MDPI, vol. 15(14), pages 1-30, July.
    10. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    11. A.G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Khaled Elsaid & Mohammad Ali Abdelkareem, 2020. "Prospects of Fuel Cell Combined Heat and Power Systems," Energies, MDPI, vol. 13(16), pages 1-20, August.
    12. Abed Alaswad & Abdelnasir Omran & Jose Ricardo Sodre & Tabbi Wilberforce & Gianmichelle Pignatelli & Michele Dassisti & Ahmad Baroutaji & Abdul Ghani Olabi, 2020. "Technical and Commercial Challenges of Proton-Exchange Membrane (PEM) Fuel Cells," Energies, MDPI, vol. 14(1), pages 1-21, December.
    13. Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
    14. Xing, Shuang & Zhao, Chen & Zou, Jiexin & Zaman, Shahid & Yu, Yang & Gong, Hongwei & Wang, Yajun & Chen, Ming & Wang, Min & Lin, Meng & Wang, Haijiang, 2022. "Recent advances in heat and water management of forced-convection open-cathode proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    15. Yan, Wei-Mon & Lin, Jian-Cheng & Chen, Chen-Yu & Amani, Mohammad, 2023. "Performance evaluation of TiN/Ti coatings on the aluminum alloy bipolar plates for PEM fuel cells," Renewable Energy, Elsevier, vol. 216(C).
    16. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Homes of the future: Unpacking public perceptions to power the domestic hydrogen transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    17. Ki-Hoon Kim & Min-Seung Jo & Sung-Ho Kim & Bokyeong Kim & Joonhee Kang & Jun-Bo Yoon & Min-Ho Seo, 2024. "Long-term reliable wireless H2 gas sensor via repeatable thermal refreshing of palladium nanowire," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. John Vourdoubas, 2021. "Is the De-carbonization of Air-transportation to and from the Island of Crete, Greece Feasible?," Environmental Management and Sustainable Development, Macrothink Institute, vol. 10(3), pages 62-75, August.
    19. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    20. Alina E. Kozhukhova & Stephanus P. du Preez & Dmitri G. Bessarabov, 2021. "Catalytic Hydrogen Combustion for Domestic and Safety Applications: A Critical Review of Catalyst Materials and Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:338:y:2023:i:c:s0306261923002933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.