IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v327y2022ics0306261922013964.html
   My bibliography  Save this article

Carbon-calcium composite conversion of calcium carbide-acetylene system: On the imperative roles of carbon capture and solid waste recycling

Author

Listed:
  • Wang, Hongxia
  • Xu, Wanyi
  • Sharif, Maimoona
  • Wu, Xiaomei
  • Cheng, Guangxu
  • Cui, Xiaomi
  • Zhang, Zaoxiao

Abstract

As an important national basic industry in China, the production of calcium carbide faced with huge pressure on energy conservation and emission reduction because of the CO2 emission and solid waste carbide slag. Therefore, it is necessary to realize the recycling of carbon and calcium in the production process of calcium carbide. A novel system of carbon-calcium compound conversion for calcium carbide-acetylene production was proposed in this work, which combines two-stage carbon capture and calcium carbide waste slag reuse processes to achieve CO2 enrichment and calcium cycle. Based on the simulation data, the proposed system was comprehensively evaluated by material conversion, exergy and exergoeconomic analyses. It was found that the improved process performed better with an effective C, H, Ca atomic conversion rate for carbide furnace of 85.41% and CO2 capture efficiency of 90.35%, compared with the referenced process of 64.51% and 0, respectively. The exergoeconomic analysis results suggested that more focus should be put on carbide furnace, acetylene reactor, re-carbonization furnace, gasifier and calciner since they are the top five of capital investments and exergy destruction. Besides, the carbide furnace, acetylene reactor, re-carbonization furnace and gasifier have relatively lower exergoeconomic factor (fk) values of 1.00%, 0.93%, 2.27% and 3.07%, respectively, indicating that exergy destruction costs of these components can be decreased with the improvement of system thermodynamic and equipment performance. Furthermore, the calcium looping process formed based on the improved oxy-thermal method (OTM) process, using the captured CO2 to mineralize carbide slag to form another calcification cycle for the production of calcium carbide-acetylene, has a higher exergy efficiency of 48.97% than the referenced process of 47.85%, and also achieves the lowest carbon emissions and the obvious reduction in CaO input. Results revealed that the proposed calcium looping system with high-efficiency, low-carbon and clean for calcium carbide-acetylene production, could be a promising process for carbon emission reduction in practical applications.

Suggested Citation

  • Wang, Hongxia & Xu, Wanyi & Sharif, Maimoona & Wu, Xiaomei & Cheng, Guangxu & Cui, Xiaomi & Zhang, Zaoxiao, 2022. "Carbon-calcium composite conversion of calcium carbide-acetylene system: On the imperative roles of carbon capture and solid waste recycling," Applied Energy, Elsevier, vol. 327(C).
  • Handle: RePEc:eee:appene:v:327:y:2022:i:c:s0306261922013964
    DOI: 10.1016/j.apenergy.2022.120139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922013964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    2. Sun, Zhao & Chen, Shiyi & Ma, Shiwei & Xiang, Wenguo & Song, Quanbin, 2016. "Simulation of the calcium looping process (CLP) for hydrogen, carbon monoxide and acetylene poly-generation with CO2 capture and COS reduction," Applied Energy, Elsevier, vol. 169(C), pages 642-651.
    3. Xie, Heping & Gao, Xiaolin & Liu, Tao & Chen, Bin & Wu, Yifan & Jiang, Wenchuan, 2020. "Electricity generation by a novel CO2 mineralization cell based on organic proton-coupled electron transfer," Applied Energy, Elsevier, vol. 261(C).
    4. Liu, Zhu, 2016. "National carbon emissions from the industry process: Production of glass, soda ash, ammonia, calcium carbide and alumina," Applied Energy, Elsevier, vol. 166(C), pages 239-244.
    5. Wiesberg, Igor Lapenda & Brigagão, George Victor & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2019. "Carbon dioxide management via exergy-based sustainability assessment: Carbon Capture and Storage versus conversion to methanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 720-732.
    6. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    7. Wu, Zhen & Zhu, Pengfei & Yao, Jing & Zhang, Shengan & Ren, Jianwei & Yang, Fusheng & Zhang, Zaoxiao, 2020. "Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations," Applied Energy, Elsevier, vol. 279(C).
    8. Huo, Hailong & Liu, Xunliang & Wen, Zhi & Lou, Guofeng & Dou, Ruifeng & Su, Fuyong & Zhou, Wenning & Jiang, Zeyi, 2021. "Case study of a novel low rank coal to calcium carbide process based on techno-economic assessment," Energy, Elsevier, vol. 228(C).
    9. Su, Chenglin & Duan, Lunbo & Donat, Felix & Anthony, Edward John, 2018. "From waste to high value utilization of spent bleaching clay in synthesizing high-performance calcium-based sorbent for CO2 capture," Applied Energy, Elsevier, vol. 210(C), pages 117-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jie & Dong, Senlin & Xie, Longgui & Cen, Qihong & Zheng, Dalong & Ma, Liping & Dai, Quxiu, 2023. "Analysis of hydrogen-rich syngas generation in chemical looping gasification of lignite: Application of carbide slag as the oxygen carrier, hydrogen carrier, and in-situ carbon capture agent," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osat, Mohammad & Shojaati, Faryar & Osat, Mojtaba, 2023. "A solar-biomass system associated with CO2 capture, power generation and waste heat recovery for syngas production from rice straw and microalgae: Technological, energy, exergy, exergoeconomic and env," Applied Energy, Elsevier, vol. 340(C).
    2. Liang, Wenxing & Yu, Zeting & Liu, Wenjing & Ji, Shaobo, 2023. "Investigation of a novel near-zero emission poly-generation system based on biomass gasification and SOFC: A thermodynamic and exergoeconomic evaluation," Energy, Elsevier, vol. 282(C).
    3. Wang, Qiushi & Duan, Liqiang & Zheng, Nan & Lu, Ziyi, 2023. "4E Analysis of a novel combined cooling, heating and power system coupled with solar thermochemical process and energy storage," Energy, Elsevier, vol. 275(C).
    4. Tariq, Shahzeb & Safder, Usman & Yoo, ChangKyoo, 2022. "Exergy-based weighted optimization and smart decision-making for renewable energy systems considering economics, reliability, risk, and environmental assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Asgari, Nima & Khoshbakhti Saray, Rahim & Mirmasoumi, Siamak, 2023. "Seasonal exergoeconomic assessment and optimization of a dual-fuel trigeneration system of power, cooling, heating, and domestic hot water, proposed for Tabriz, Iran," Renewable Energy, Elsevier, vol. 206(C), pages 192-213.
    6. Huang, Yue & Zhu, Lin & He, Yangdong & Wang, Yuan & Hao, Qiang & Zhu, Yifei, 2023. "Carbon dioxide utilization based on exergoenvironmental sustainability assessment: A case study of CO2 hydrogenation to methanol," Energy, Elsevier, vol. 273(C).
    7. Koo, Taehyung & Kim, Young Sang & Lee, Young Duk & Yu, Sangseok & Lee, Dong Keun & Ahn, Kook Young, 2021. "Exergetic evaluation of operation results of 5-kW-class SOFC-HCCI engine hybrid power generation system," Applied Energy, Elsevier, vol. 295(C).
    8. Chehrmonavari, Hamed & Kakaee, Amirhasan & Hosseini, Seyed Ehsan & Desideri, Umberto & Tsatsaronis, George & Floerchinger, Gus & Braun, Robert & Paykani, Amin, 2023. "Hybridizing solid oxide fuel cells with internal combustion engines for power and propulsion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    9. Koo, Taehyung & Kim, Young Sang & Lee, Dongkeun & Yu, Sangseok & Lee, Young Duk, 2021. "System simulation and exergetic analysis of solid oxide fuel cell power generation system with cascade configuration," Energy, Elsevier, vol. 214(C).
    10. Zhu, Wanchao & Han, Jitian & Ge, Yi & Yang, Jinwen & Liang, Wenxing, 2024. "Multi-criteria optimization of a combined power and freshwater system using modified NSGA-II and AHP-entropy-topsis," Renewable Energy, Elsevier, vol. 227(C).
    11. Wu, Zhen & Zhu, Pengfei & Yao, Jing & Zhang, Shengan & Ren, Jianwei & Yang, Fusheng & Zhang, Zaoxiao, 2020. "Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations," Applied Energy, Elsevier, vol. 279(C).
    12. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
    13. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    14. Sadi, M. & Arabkoohsar, A., 2019. "Exergoeconomic analysis of a combined solar-waste driven power plant," Renewable Energy, Elsevier, vol. 141(C), pages 883-893.
    15. Petrakopoulou, Fontina & Tsatsaronis, George & Morosuk, Tatiana & Carassai, Anna, 2012. "Conventional and advanced exergetic analyses applied to a combined cycle power plant," Energy, Elsevier, vol. 41(1), pages 146-152.
    16. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    17. Yue, Ting & Lior, Noam, 2017. "Exergo economic analysis of solar-assisted hybrid power generation systems integrated with thermochemical fuel conversion," Applied Energy, Elsevier, vol. 191(C), pages 204-222.
    18. Primabudi, Eko & Morosuk, Tatiana & Tsatsaronis, George, 2019. "Multi-objective optimization of propane pre-cooled mixed refrigerant (C3MR) LNG process," Energy, Elsevier, vol. 185(C), pages 492-504.
    19. Silveira, Jose Luz & Lamas, Wendell de Queiroz & Tuna, Celso Eduardo & Villela, Iraides Aparecida de Castro & Miro, Laura Siso, 2012. "Ecological efficiency and thermoeconomic analysis of a cogeneration system at a hospital," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2894-2906.
    20. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:327:y:2022:i:c:s0306261922013964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.