IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v307y2022ics0306261921014653.html
   My bibliography  Save this article

Managing the techno-economic impacts of partial string failure in multistring energy storage systems

Author

Listed:
  • Hanif, Sarmad
  • Alam, M.J.E.
  • Fotedar, Vanshika
  • Crawford, Alasdair
  • Vartanian, Charlie
  • Viswanathan, Vilayanur

Abstract

The role of energy storage systems (ESSs) is becoming increasingly important for today’s electric power systems. Unavailability of an ESS assigned to critical grid services may cause unwanted disruption of those services and hence, may have a significant techno-economic impact. Like any physical equipment, an ESS is vulnerable to various types of faults. Failure of one or more strings in a multistring ESS does not have to be the cause of shutting down the entire ESS. It can still operate with a partial number of strings and continue providing critical services to the grid, if there are no reliability or safety issues and is acceptable under applicable standards. However, it is important to make sure that the control strategies are adaptable to the changes in ESS capacity caused by failed strings. Also, depending on the previous operation and type of failure, the reallocation of duty cycle burden among available strings could be non-uniform. These complexities suggest that mitigation of the impact of partial failure in multistring ESSs is not trivial and needs careful consideration. This is the topic of this paper. The proposed work investigates the impact of partial failure of a large multistring ESS on the assigned service and develops strategies to adjust the ESS control duty cycles for reducing such impacts. In doing so, the paper proposes a novel two-stage framework that plans for the multistring failure using robust optimization theory and then adjusts in real-time using a rule-based algorithm, based on the real-time information on the power availability of the string. Illustrations provided in this work are based on frequency regulation use-case, which is a common application for many utility-scale ESSs. A 750 kilowatt (kW)/1500 kilowatt-hour (kWh) 3-string ESS is used for the demonstration in this work and the efficacy of the proposed method is demonstrated and compared against methods that do not incorporate string failure in their strategy. In particular, we show that revenue loss of 93% can be incurred when partial string failure is not included in operation and planning. These losses in revenue are reduced by 60% with the proposed method.

Suggested Citation

  • Hanif, Sarmad & Alam, M.J.E. & Fotedar, Vanshika & Crawford, Alasdair & Vartanian, Charlie & Viswanathan, Vilayanur, 2022. "Managing the techno-economic impacts of partial string failure in multistring energy storage systems," Applied Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014653
    DOI: 10.1016/j.apenergy.2021.118196
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921014653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schroeder, Andreas, 2011. "Modeling storage and demand management in power distribution grids," Applied Energy, Elsevier, vol. 88(12), pages 4700-4712.
    2. Lisa B. Bosman & Walter D. Leon-Salas & William Hutzel & Esteban A. Soto, 2020. "PV System Predictive Maintenance: Challenges, Current Approaches, and Opportunities," Energies, MDPI, vol. 13(6), pages 1-16, March.
    3. Antonio J. Conejo & Miguel Carrión & Juan M. Morales, 2010. "Decision Making Under Uncertainty in Electricity Markets," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7421-1, December.
    4. Kendall Mongird & Vilayanur Viswanathan & Patrick Balducci & Jan Alam & Vanshika Fotedar & Vladimir Koritarov & Boualem Hadjerioua, 2020. "An Evaluation of Energy Storage Cost and Performance Characteristics," Energies, MDPI, vol. 13(13), pages 1-53, June.
    5. Jangkyum Kim & Yohwan Choi & Seunghyoung Ryu & Hongseok Kim, 2017. "Robust Operation of Energy Storage System with Uncertain Load Profiles," Energies, MDPI, vol. 10(4), pages 1-15, March.
    6. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    7. Wu, Di & Ma, Xu & Balducci, Patrick & Bhatnagar, Dhruv, 2021. "An economic assessment of behind-the-meter photovoltaics paired with batteries on the Hawaiian Islands," Applied Energy, Elsevier, vol. 286(C).
    8. Holger C. Hesse & Michael Schimpe & Daniel Kucevic & Andreas Jossen, 2017. "Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids," Energies, MDPI, vol. 10(12), pages 1-42, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ju-Hee Kim & Min-Ki Hyun & Seung-Hoon Yoo, 2023. "Households’ Willingness to Pay for Interactive Charging Stations for Vehicle to Grid System in South Korea," Sustainability, MDPI, vol. 15(15), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanif, Sarmad & Alam, M.J.E. & Roshan, Kini & Bhatti, Bilal A. & Bedoya, Juan C., 2022. "Multi-service battery energy storage system optimization and control," Applied Energy, Elsevier, vol. 311(C).
    2. Jinwoo Jeong & Heewon Shin & Hwachang Song & Byongjun Lee, 2018. "A Countermeasure for Preventing Flexibility Deficit under High-Level Penetration of Renewable Energies: A Robust Optimization Approach," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    3. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    4. Soroudi, Alireza & Amraee, Turaj, 2013. "Decision making under uncertainty in energy systems: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 376-384.
    5. Wafa Nafkha-Tayari & Seifeddine Ben Elghali & Ehsan Heydarian-Forushani & Mohamed Benbouzid, 2022. "Virtual Power Plants Optimization Issue: A Comprehensive Review on Methods, Solutions, and Prospects," Energies, MDPI, vol. 15(10), pages 1-20, May.
    6. Lima, Ricardo M. & Novais, Augusto Q. & Conejo, Antonio J., 2015. "Weekly self-scheduling, forward contracting, and pool involvement for an electricity producer. An adaptive robust optimization approach," European Journal of Operational Research, Elsevier, vol. 240(2), pages 457-475.
    7. Jianwen Ren & Yingqiang Xu & Shiyuan Wang, 2018. "A Distributed Robust Dispatch Approach for Interconnected Systems with a High Proportion of Wind Power Penetration," Energies, MDPI, vol. 11(4), pages 1-18, April.
    8. Li, Xingchen & Xu, Guangcheng & Wu, Jie & Xu, Chengzhen & Zhu, Qingyuan, 2024. "Evaluation of bank efficiency by considering the uncertainty of nonperforming loans," Omega, Elsevier, vol. 126(C).
    9. Yasemin Merzifonluoglu & Eray Uzgoren, 2018. "Photovoltaic power plant design considering multiple uncertainties and risk," Annals of Operations Research, Springer, vol. 262(1), pages 153-184, March.
    10. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    11. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    12. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    13. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    14. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    15. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    16. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    17. Jungsub Sim & Minsoo Kim & Dongjoo Kim & Hongseok Kim, 2021. "Cloud Energy Storage System Operation with Capacity P2P Transaction," Energies, MDPI, vol. 14(2), pages 1-13, January.
    18. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    19. Jeong, Jaehee & Premsankar, Gopika & Ghaddar, Bissan & Tarkoma, Sasu, 2024. "A robust optimization approach for placement of applications in edge computing considering latency uncertainty," Omega, Elsevier, vol. 126(C).
    20. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.