IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v306y2022ipas0306261921012769.html
   My bibliography  Save this article

Flexible multijunction solar cells embedded inside smart dust modules for outdoor applications to Smart Grids

Author

Listed:
  • Liu, Cheng-Yi
  • Huang, Chun-Kai
  • Huang, Yen-Yu
  • Chang, Kun-Chieh
  • Yu, Kun-Lin
  • Chiang, Chien-Hung
  • Wu, Chun-Guey
  • Lee, Shih-Chang
  • Yen, Wei-Yu
  • Sheu, Jinn-Kong
  • Shi, Jin-Wei

Abstract

The functioning of self-sustaining smart dust modules plays a vital role in the development of the smart electric grid. In this work, we first devise a flexible triple-junction III-V solar cell embedded inside a smart dust module suitable for outdoor applications. These flexible solar cells are demonstrated to have a bending radius of over 5 cm and exhibit a conversion efficiency of around 25% under air mass 1.5G (1 sun) conditions. Under normal incidence of sunlight at the same conditions, our cell with its small active area of 0.4 cm2 can generate around 10.1 mW of electrical power. This is sufficient to meet the direct current power consumption (∼5.4 mW) requirements of our dust module, which includes a temperature/moisture sensor, a 3-axis linear accelerometer, and a Bluetooth chip. In comparison to a silicon-based flexible solar cell, our demonstrated III-V solar cell is smaller, requiring approximately 40% of the area to produce the same electrical power output. Our dust module is controlled using a self-developed Android application installed on a smartphone and can sustain continuous-wave operation for data collection and wireless transmission even when the incident angle of the sunlight reaches 75°. Pulse-mode operation is still possible even in the case of nearly 90° illuminations (for example, at sunset). Overall, the measurement results for this flexible solar cell are promising, allowing for further reduction in the size of a self-sustaining smart dust module with improved reliability. These advantages could facilitate development of the next generation of energy saving smart electric grids.

Suggested Citation

  • Liu, Cheng-Yi & Huang, Chun-Kai & Huang, Yen-Yu & Chang, Kun-Chieh & Yu, Kun-Lin & Chiang, Chien-Hung & Wu, Chun-Guey & Lee, Shih-Chang & Yen, Wei-Yu & Sheu, Jinn-Kong & Shi, Jin-Wei, 2022. "Flexible multijunction solar cells embedded inside smart dust modules for outdoor applications to Smart Grids," Applied Energy, Elsevier, vol. 306(PA).
  • Handle: RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921012769
    DOI: 10.1016/j.apenergy.2021.117970
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921012769
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Taesoo D. & Ebong, Abasifreke U., 2017. "A review of thin film solar cell technologies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1286-1297.
    2. Rafique, Saqib & Abdullah, Shahino Mah & Sulaiman, Khaulah & Iwamoto, Mitsumasa, 2018. "Fundamentals of bulk heterojunction organic solar cells: An overview of stability/degradation issues and strategies for improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 43-53.
    3. Falcão, D.S. & Oliveira, V.B. & Rangel, C.M. & Pinto, A.M.F.R., 2014. "Review on micro-direct methanol fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 58-70.
    4. Yoldaş, Yeliz & Önen, Ahmet & Muyeen, S.M. & Vasilakos, Athanasios V. & Alan, İrfan, 2017. "Enhancing smart grid with microgrids: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 205-214.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhattacharjee, Vikram & Khan, Irfan, 2018. "A non-linear convex cost model for economic dispatch in microgrids," Applied Energy, Elsevier, vol. 222(C), pages 637-648.
    2. Kolasa, Piotr & Janowski, Mirosław, 2017. "Study of possibilities to store energy virtually in a grid (VESS) with the use of smart metering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1513-1517.
    3. Freier, Daria & Ramirez-Iniguez, Roberto & Jafry, Tahseen & Muhammad-Sukki, Firdaus & Gamio, Carlos, 2018. "A review of optical concentrators for portable solar photovoltaic systems for developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 957-968.
    4. Jeziel Vázquez & Elias J. J. Rodriguez & Jaime Arau & Nimrod Vázquez, 2021. "A di/dt Detection Circuit for DC Unidirectional Breaker Based on Inductor Transient Behaviour," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    5. Huang, Pengluan & Hu, Guoqiang & Zhao, Xiaodong & Lu, Luyi & Ding, Honggang & Li, Jianlan, 2022. "Effect of organics on the adhesion of dust to PV panel surfaces under condensation," Energy, Elsevier, vol. 261(PB).
    6. Wang, Bo & Deng, Nana & Li, Haoxiang & Zhao, Wenhui & Liu, Jie & Wang, Zhaohua, 2021. "Effect and mechanism of monetary incentives and moral suasion on residential peak-hour electricity usage," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    7. Gonzalez de Durana, Jose & Barambones, Oscar, 2018. "Technology-free microgrid modeling with application to demand side management," Applied Energy, Elsevier, vol. 219(C), pages 165-178.
    8. Emilio Ghiani & Alessandro Serpi & Virginia Pilloni & Giuliana Sias & Marco Simone & Gianluca Marcialis & Giuliano Armano & Paolo Attilio Pegoraro, 2018. "A Multidisciplinary Approach for the Development of Smart Distribution Networks," Energies, MDPI, vol. 11(10), pages 1-29, September.
    9. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Yiqing Dai & Yan Yin & Yundi Lu, 2021. "Strategies to Facilitate Photovoltaic Applications in Road Structures for Energy Harvesting," Energies, MDPI, vol. 14(21), pages 1-14, October.
    11. Xiao Qi & Yan Bai & Huanhuan Luo & Yiqing Zhang & Guiping Zhou & Zhonghua Wei, 2018. "Novel Distributed Optimal Control of Battery Energy Storage System in an Islanded Microgrid with Fast Frequency Recovery," Energies, MDPI, vol. 11(8), pages 1-18, July.
    12. Ruben Sánchez-Corcuera & Adrián Nuñez-Marcos & Jesus Sesma-Solance & Aritz Bilbao-Jayo & Rubén Mulero & Unai Zulaika & Gorka Azkune & Aitor Almeida, 2019. "Smart cities survey: Technologies, application domains and challenges for the cities of the future," International Journal of Distributed Sensor Networks, , vol. 15(6), pages 15501477198, June.
    13. Howell, Shaun & Rezgui, Yacine & Hippolyte, Jean-Laurent & Jayan, Bejay & Li, Haijiang, 2017. "Towards the next generation of smart grids: Semantic and holonic multi-agent management of distributed energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 193-214.
    14. Vinny Motjoadi & Pitshou N. Bokoro & Moses O. Onibonoje, 2020. "A Review of Microgrid-Based Approach to Rural Electrification in South Africa: Architecture and Policy Framework," Energies, MDPI, vol. 13(9), pages 1-22, May.
    15. Ziapour, Behrooz M. & Alirezaei, Hadi & Ghorannevis, Sepideh, 2023. "Energy recovery from the enclosures between the glassing covers in a compact photovoltaic thermal collector," Renewable Energy, Elsevier, vol. 216(C).
    16. Selvaraj, Prabhakaran & Ghosh, Aritra & Mallick, Tapas K. & Sundaram, Senthilarasu, 2019. "Investigation of semi-transparent dye-sensitized solar cells for fenestration integration," Renewable Energy, Elsevier, vol. 141(C), pages 516-525.
    17. Aqdas Naz & Muhammad Umar Javed & Nadeem Javaid & Tanzila Saba & Musaed Alhussein & Khursheed Aurangzeb, 2019. "Short-Term Electric Load and Price Forecasting Using Enhanced Extreme Learning Machine Optimization in Smart Grids," Energies, MDPI, vol. 12(5), pages 1-30, March.
    18. Milis, Kevin & Peremans, Herbert & Van Passel, Steven, 2018. "Steering the adoption of battery storage through electricity tariff design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 125-139.
    19. Artur Felipe da Silva Veloso & José Valdemir Reis Júnior & Ricardo de Andrade Lira Rabelo & Jocines Dela-flora Silveira, 2021. "HyDSMaaS: A Hybrid Communication Infrastructure with LoRaWAN and LoraMesh for the Demand Side Management as a Service," Future Internet, MDPI, vol. 13(11), pages 1-45, October.
    20. Shubbak, Mahmood H., 2019. "Advances in solar photovoltaics: Technology review and patent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921012769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.