Vapor-selective active membrane energy exchanger for high efficiency outdoor air treatment
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2021.116950
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Labban, Omar & Chen, Tianyi & Ghoniem, Ahmed F. & Lienhard, John H. & Norford, Leslie K., 2017. "Next-generation HVAC: Prospects for and limitations of desiccant and membrane-based dehumidification and cooling," Applied Energy, Elsevier, vol. 200(C), pages 330-346.
- Qu, Ming & Abdelaziz, Omar & Gao, Zhiming & Yin, Hongxi, 2018. "Isothermal membrane-based air dehumidification: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4060-4069.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fix, Andrew J. & Oh, Jinwoo & Braun, James E. & Warsinger, David M., 2024. "Dual-module humidity pump for efficient air dehumidification: Demonstration and performance limitations," Applied Energy, Elsevier, vol. 360(C).
- Liu, Wei & Chau, K.T. & Tian, Xiaoyang & Wang, Hui & Hua, Zhichao, 2023. "Smart wireless power transfer — opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
- Fix, Andrew J. & Pamintuan, Bryan C. & Braun, James E. & Warsinger, David M., 2022. "Vapor-selective active membrane energy exchanger with mechanical ventilation and indoor air recirculation," Applied Energy, Elsevier, vol. 312(C).
- Li, Hao & Zhang, Tao & Zhang, Ji & Guan, Bowen & Liu, Xiaohua & Nakazawa, Takema & Fang, Lin & Tanaka, Toshio, 2023. "Investigation of energy recovery performance and frost risk of membrane enthalpy exchanger applied in cold climates," Energy, Elsevier, vol. 282(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fix, Andrew J. & Oh, Jinwoo & Braun, James E. & Warsinger, David M., 2024. "Dual-module humidity pump for efficient air dehumidification: Demonstration and performance limitations," Applied Energy, Elsevier, vol. 360(C).
- Fix, Andrew J. & Pamintuan, Bryan C. & Braun, James E. & Warsinger, David M., 2022. "Vapor-selective active membrane energy exchanger with mechanical ventilation and indoor air recirculation," Applied Energy, Elsevier, vol. 312(C).
- Zhang, Ning & Yin, Shao-You & Li, Min, 2018. "Model-based optimization for a heat pump driven and hollow fiber membrane hybrid two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 228(C), pages 12-20.
- Thu, K. & Mitra, S. & Saha, B.B. & Srinivasa Murthy, S., 2018. "Thermodynamic feasibility evaluation of hybrid dehumidification – mechanical vapour compression systems," Applied Energy, Elsevier, vol. 213(C), pages 31-44.
- Jagirdar, Mrinal & Lee, Poh Seng, 2018. "Mathematical modeling and performance evaluation of a desiccant coated fin-tube heat exchanger," Applied Energy, Elsevier, vol. 212(C), pages 401-415.
- Elnagar, Essam & Pezzutto, Simon & Duplessis, Bruno & Fontenaille, Théodore & Lemort, Vincent, 2023. "A comprehensive scouting of space cooling technologies in Europe: Key characteristics and development trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
- Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
- Vo, Nguyen Dat & Oh, Dong Hoon & Kang, Jun-Ho & Oh, Min & Lee, Chang-Ha, 2020. "Dynamic-model-based artificial neural network for H2 recovery and CO2 capture from hydrogen tail gas," Applied Energy, Elsevier, vol. 273(C).
- Min, Yunran & Chen, Yi & Shi, Wenchao & Yang, Hongxing, 2021. "Applicability of indirect evaporative cooler for energy recovery in hot and humid areas: Comparison with heat recovery wheel," Applied Energy, Elsevier, vol. 287(C).
- Zhang, Qunli & Li, Yanxin & Zhang, Qiuyue & Ma, Fengge & Lü, Xiaoshu, 2024. "Application of deep dehumidification technology in low-humidity industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
- Guo, Yi & Al-Jubainawi, Ali & Peng, Xueyuan, 2019. "Modelling and the feasibility study of a hybrid electrodialysis and thermal regeneration method for LiCl liquid desiccant dehumidification," Applied Energy, Elsevier, vol. 239(C), pages 1014-1036.
- Chua, K.J. & Chou, S.K. & Islam, M.R., 2018. "On the experimental study of a hybrid dehumidifier comprising membrane and composite desiccants," Applied Energy, Elsevier, vol. 220(C), pages 934-943.
- Elnagar, Essam & Zeoli, Alanis & Rahif, Ramin & Attia, Shady & Lemort, Vincent, 2023. "A qualitative assessment of integrated active cooling systems: A review with a focus on system flexibility and climate resilience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
- Liang, Cai-Hang & Li, Nan-Feng & Huang, Si-Min, 2020. "Entropy and exergy analysis of an internally-cooled membrane liquid desiccant dehumidifier," Energy, Elsevier, vol. 192(C).
- Vivekh, P. & Bui, D.T. & Islam, M.R. & Zaw, K. & Chua, K.J., 2020. "Experimental performance and energy efficiency investigation of composite superabsorbent polymer and potassium formate coated heat exchangers," Applied Energy, Elsevier, vol. 275(C).
- Islam, M.R. & Alan, S.W.L. & Chua, K.J., 2018. "Studying the heat and mass transfer process of liquid desiccant for dehumidification and cooling," Applied Energy, Elsevier, vol. 221(C), pages 334-347.
- Sui, Zengguang & Wu, Wei, 2023. "AI-assisted maldistribution minimization of membrane-based heat/mass exchangers for compact absorption cooling," Energy, Elsevier, vol. 263(PC).
- Sun, Bo & Huang, Shifang & Su, Wei & Lu, Lin & Zhang, Xiaosong, 2023. "A comprehensive analysis of the minimum energy and thermodynamic efficiency of regenerating aqueous electrolyte solutions in air-conditioning systems," Energy, Elsevier, vol. 284(C).
- Yan, Weichao & Meng, Xiangzhao & Cui, Xin & Liu, Yilin & Chen, Qian & Jin, Liwen, 2022. "Evaporative cooling performance prediction and multi-objective optimization for hollow fiber membrane module using response surface methodology," Applied Energy, Elsevier, vol. 325(C).
More about this item
Keywords
Membrane; Dehumidification; Vapor-selective; Exchanger; Outdoor air;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:295:y:2021:i:c:s030626192100427x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.