IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v281y2021ics0306261920314860.html
   My bibliography  Save this article

Scalable-manufactured metal–insulator–metal based selective solar absorbers with excellent high-temperature insensitivity

Author

Listed:
  • Tian, Yanpei
  • Liu, Xiaojie
  • Ghanekar, Alok
  • Zheng, Yi

Abstract

Solar absorbers, harvesting solar irradiance in the form of heat, are extensively applied in the solar hot water systems and concentrated solar thermal systems such as concentrated solar power plants, solar thermoelectric generators, and solar thermophotovoltaics. It is of great significance to incorporate spectrally selective solar absorbers into solar thermal systems, especially at high operational temperatures to depress the thermal loss due to the thermal re-emission of high-temperature solar absorbers. This work computationally and experimentally demonstrates a new spectrally selective solar absorber consisting of a multilayered stack made of silica/alumina/tungsten/alumina/tungsten based on metal–insulator–metal resonance structures and fabricated by the magnetron sputtering method, which are angular insensitive and polarization-independent. The relationship between solar conversion efficiency, cut-off wavelength, operational temperatures, and concentration factor is theoretically investigated. An overall absorptance of 88.1% at solar irradiance wavelength, a low emittance of 7.0% at infrared thermal wavelength, and a high solar-to-heat efficiency of 82.5% are identified. Additionally, it shows the annealed samples maintain an extremely high absorption in solar radiation regime over at least 800 °C and a high concentration factor of over 100. The SEM topography images of the absorbers after thermal annealing at various temperatures demonstrates that the surface blisters and cracks result in the thermal degradation of the absorbers due to the dissimilarity between thermal expansion coefficients of tungsten and silica. The high-temperature insensitivity of the multilayer metal–insulator–metal-based selective solar absorbers will shed light on an alternative novel photonic metamaterial structure that can be scalable-manufactured to improve the energy conversion efficiency of solar thermal engineering.

Suggested Citation

  • Tian, Yanpei & Liu, Xiaojie & Ghanekar, Alok & Zheng, Yi, 2021. "Scalable-manufactured metal–insulator–metal based selective solar absorbers with excellent high-temperature insensitivity," Applied Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:appene:v:281:y:2021:i:c:s0306261920314860
    DOI: 10.1016/j.apenergy.2020.116055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920314860
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. XiaoZhi Lim, 2017. "How heat from the Sun can keep us all cool," Nature, Nature, vol. 542(7639), pages 23-24, February.
    2. Jiang, Dongyue & Yang, Wenming & Tang, Aikun, 2016. "A refractory selective solar absorber for high performance thermochemical steam reforming," Applied Energy, Elsevier, vol. 170(C), pages 286-292.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lina Alhmoud, 2023. "Why Does the PV Solar Power Plant Operate Ineffectively?," Energies, MDPI, vol. 16(10), pages 1-38, May.
    2. Zhou, Xin & Tian, Shuai & An, Jingjing & Yan, Da & Zhang, Lun & Yang, Junyan, 2022. "Modeling occupant behavior’s influence on the energy efficiency of solar domestic hot water systems," Applied Energy, Elsevier, vol. 309(C).
    3. Pan, Hong-Yu & Chen, Xue & Xia, Xin-Lin, 2022. "A review on the evolvement of optical-frequency filtering in photonic devices in 2016–2021," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hadeed Ashraf & Muhammad Sultan & Redmond R. Shamshiri & Farrukh Abbas & Muhammad Farooq & Uzair Sajjad & Hafiz Md-Tahir & Muhammad H. Mahmood & Fiaz Ahmad & Yousaf R. Taseer & Aamir Shahzad & Badar M, 2021. "Dynamic Evaluation of Desiccant Dehumidification Evaporative Cooling Options for Greenhouse Air-Conditioning Application in Multan (Pakistan)," Energies, MDPI, vol. 14(4), pages 1-21, February.
    2. Wang, Qiushi & Duan, Liqiang & Zheng, Nan & Lu, Ziyi, 2023. "4E Analysis of a novel combined cooling, heating and power system coupled with solar thermochemical process and energy storage," Energy, Elsevier, vol. 275(C).
    3. Wang, Qiliang & Yang, Honglun & Zhong, Shuai & Huang, Yihang & Hu, Mingke & Cao, Jingyu & Pei, Gang & Yang, Hongxing, 2020. "Comprehensive experimental testing and analysis on parabolic trough solar receiver integrated with radiation shield," Applied Energy, Elsevier, vol. 268(C).
    4. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    5. Sui, Jiyuan & Chen, Zhennan & Wang, Chen & Wang, Yueyang & Liu, Jianhong & Li, Wenjia, 2020. "Efficient hydrogen production from solar energy and fossil fuel via water-electrolysis and methane-steam-reforming hybridization," Applied Energy, Elsevier, vol. 276(C).
    6. Fuqiang, Wang & Lanxin, Ma & Ziming, Cheng & Jianyu, Tan & Xing, Huang & Linhua, Liu, 2017. "Radiative heat transfer in solar thermochemical particle reactor: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 935-949.
    7. Cao, Pengfei & Adegbite, Stephen & Zhao, Haitao & Lester, Edward & Wu, Tao, 2018. "Tuning dry reforming of methane for F-T syntheses: A thermodynamic approach," Applied Energy, Elsevier, vol. 227(C), pages 190-197.
    8. Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:281:y:2021:i:c:s0306261920314860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.