IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v278y2020ics0306261920310400.html
   My bibliography  Save this article

Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes

Author

Listed:
  • Salar-Garcia, M.J.
  • Montilla, F.
  • Quijada, C.
  • Morallon, E.
  • Ieropoulos, I.

Abstract

The need for improving the energy harvesting from Microbial Fuel Cells (MFCs) has boosted the design of new materials in order to increase the power performance of this technology and facilitate its practical application. According to this approach, in this work different poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT-PSS) modified electrodes have been synthesised and evaluated as anodes in urine-fed MFCs. The electrochemical synthesis of PEDOT-PSS was performed by potentiostatic step experiments from aqueous solution at a fixed potential of 1.80 V (vs. a reversible hydrogen electrode) for different times: 30, 60, 120 and 240 s. Compared with other methods, this technique allowed us not only to reduce the processing time of the electrodes but also better control of the chemical composition of the deposited polymer and therefore, obtain more efficient polymer films. All modified anodes outperformed the maximum power output by MFCs working with the bare carbon veil electrode but the maximum value was observed when MFCs were working with the PEDOT-PSS based anode obtained after 30 s of electropolymerisation (535.1 µW). This value was 24.3% higher than using the bare carbon veil electrode. Moreover, the functionality of the PEDOT-PSS anodes was reported over 90 days working in continuous mode.

Suggested Citation

  • Salar-Garcia, M.J. & Montilla, F. & Quijada, C. & Morallon, E. & Ieropoulos, I., 2020. "Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes," Applied Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920310400
    DOI: 10.1016/j.apenergy.2020.115528
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920310400
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115528?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walter, Xavier Alexis & Stinchcombe, Andrew & Greenman, John & Ieropoulos, Ioannis, 2017. "Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging," Applied Energy, Elsevier, vol. 192(C), pages 575-581.
    2. Pandey, Prashant & Shinde, Vikas N. & Deopurkar, Rajendra L. & Kale, Sharad P. & Patil, Sunil A. & Pant, Deepak, 2016. "Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery," Applied Energy, Elsevier, vol. 168(C), pages 706-723.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mashkour, Mehrdad & Rahimnejad, Mostafa & Mashkour, Mahdi & Soavi, Francesca, 2021. "Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly," Applied Energy, Elsevier, vol. 282(PA).
    2. Sun, Fengjie & Chen, Ye & Wen, Qing & Yang, Yang, 2024. "Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) bioanodes in Co-doped modified microbial fuel cell promote sulfamethoxine degradation with high enrichment of electroactive bacteria and extrace," Renewable Energy, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fischer, Fabian & Sugnaux, Marc & Savy, Cyrille & Hugenin, Gérald, 2018. "Microbial fuel cell stack power to lithium battery stack: Pilot concept for scale up," Applied Energy, Elsevier, vol. 230(C), pages 1633-1644.
    2. de Ramón-Fernández, Alberto & Salar-García, M.J. & Ruiz-Fernández, Daniel & Greenman, J. & Ieropoulos, I., 2019. "Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Wang, Chin-Tsan & Lee, Yao-Cheng & Ou, Yun-Ting & Yang, Yung-Chin & Chong, Wen-Tong & Sangeetha, Thangavel & Yan, Wei-Mon, 2017. "Exposing effect of comb-type cathode electrode on the performance of sediment microbial fuel cells," Applied Energy, Elsevier, vol. 204(C), pages 620-625.
    4. Roustazadeh Sheikhyousefi, P. & Nasr Esfahany, M. & Colombo, A. & Franzetti, A. & Trasatti, S.P. & Cristiani, P., 2017. "Investigation of different configurations of microbial fuel cells for the treatment of oilfield produced water," Applied Energy, Elsevier, vol. 192(C), pages 457-465.
    5. Santoro, Carlo & Abad, Fernando Benito & Serov, Alexey & Kodali, Mounika & Howe, Kerry J. & Soavi, Francesca & Atanassov, Plamen, 2017. "Supercapacitive microbial desalination cells: New class of power generating devices for reduction of salinity content," Applied Energy, Elsevier, vol. 208(C), pages 25-36.
    6. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    7. Tang, Raymond Chong Ong & Jang, Jer-Huan & Lan, Tzu-Hsuan & Wu, Jung-Chen & Yan, Wei-Mon & Sangeetha, Thangavel & Wang, Chin-Tsan & Ong, Hwai Chyuan & Ong, Zhi Chao, 2020. "Review on design factors of microbial fuel cells using Buckingham's Pi Theorem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    8. Hu, Jianjun & Zhang, Quanguo & Lee, Duu-Jong & Ngo, Huu Hao, 2018. "Feasible use of microbial fuel cells for pollution treatment," Renewable Energy, Elsevier, vol. 129(PB), pages 824-829.
    9. Anusha Ganta & Yasser Bashir & Sovik Das, 2022. "Dairy Wastewater as a Potential Feedstock for Valuable Production with Concurrent Wastewater Treatment through Microbial Electrochemical Technologies," Energies, MDPI, vol. 15(23), pages 1-34, November.
    10. N. Evelin Paucar & Chikashi Sato, 2022. "Coupling Microbial Fuel Cell and Hydroponic System for Electricity Generation, Organic Removal, and Nutrient Recovery via Plant Production from Wastewater," Energies, MDPI, vol. 15(23), pages 1-19, December.
    11. Xu, Lei & Wang, Bodi & Liu, Xiuhua & Yu, Wenzheng & Zhao, Yaqian, 2018. "Maximizing the energy harvest from a microbial fuel cell embedded in a constructed wetland," Applied Energy, Elsevier, vol. 214(C), pages 83-91.
    12. Hani Alshahrani & Noman Islam & Darakhshan Syed & Adel Sulaiman & Mana Saleh Al Reshan & Khairan Rajab & Asadullah Shaikh & Jaweed Shuja-Uddin & Aadar Soomro, 2023. "Sustainability in Blockchain: A Systematic Literature Review on Scalability and Power Consumption Issues," Energies, MDPI, vol. 16(3), pages 1-24, February.
    13. Mateo, S. & Cantone, A. & Cañizares, P. & Fernández-Morales, F.J. & Scialdone, O. & Rodrigo, M.A., 2018. "On the staking of miniaturized air-breathing microbial fuel cells," Applied Energy, Elsevier, vol. 232(C), pages 1-8.
    14. de Ramón-Fernández, A. & Salar-García, M.J. & Ruiz Fernández, D. & Greenman, J. & Ieropoulos, I.A., 2020. "Evaluation of artificial neural network algorithms for predicting the effect of the urine flow rate on the power performance of microbial fuel cells," Energy, Elsevier, vol. 213(C).
    15. Sami G. A. Flimban & Iqbal M. I. Ismail & Taeyoung Kim & Sang-Eun Oh, 2019. "Overview of Recent Advancements in the Microbial Fuel Cell from Fundamentals to Applications: Design, Major Elements, and Scalability," Energies, MDPI, vol. 12(17), pages 1-20, September.
    16. Liu, Huan & Yi, Linlin & Zhang, Qiang & Hu, Hongyun & Lu, Geng & Li, Aijun & Yao, Hong, 2016. "Co-production of clean syngas and ash adsorbent during sewage sludge gasification: Synergistic effect of Fenton peroxidation and CaO conditioning," Applied Energy, Elsevier, vol. 179(C), pages 1062-1068.
    17. Liu, Panpan & Liang, Peng & Jiang, Yong & Hao, Wen & Miao, Bo & Wang, Donglin & Huang, Xia, 2018. "Stimulated electron transfer inside electroactive biofilm by magnetite for increased performance microbial fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 382-388.
    18. Ngoc-Dan Cao, Thanh & Mukhtar, Hussnain & Yu, Chang-Ping & Bui, Xuan-Thanh & Pan, Shu-Yuan, 2022. "Agricultural waste-derived biochar in microbial fuel cells towards a carbon-negative circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    19. Park, Jae-Do & Roane, Timberley M. & Ren, Zhiyong Jason & Alaraj, Muhannad, 2017. "Dynamic modeling of a microbial fuel cell considering anodic electron flow and electrical charge storage," Applied Energy, Elsevier, vol. 193(C), pages 507-514.
    20. Calise, Francesco & Figaj, Rafal Damian & Massarotti, Nicola & Mauro, Alessandro & Vanoli, Laura, 2017. "Polygeneration system based on PEMFC, CPVT and electrolyzer: Dynamic simulation and energetic and economic analysis," Applied Energy, Elsevier, vol. 192(C), pages 530-542.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920310400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.