IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v277y2020ics0306261920309636.html
   My bibliography  Save this article

Data-driven control of micro-climate in buildings: An event-triggered reinforcement learning approach

Author

Listed:
  • Haji Hosseinloo, Ashkan
  • Ryzhov, Alexander
  • Bischi, Aldo
  • Ouerdane, Henni
  • Turitsyn, Konstantin
  • Dahleh, Munther A.

Abstract

Smart buildings have great potential for shaping an energy-efficient, sustainable, and more economic future for our planet as buildings account for approximately 40% of the global energy consumption. Future of the smart buildings lies in using sensory data for adaptive decision making and control that is currently gloomed by the key challenge of learning a good control policy in a short period of time in an online and continuing fashion. To tackle this challenge, an event-triggered – as opposed to classic time-triggered – paradigm, is proposed in which learning and control decisions are made when events occur and enough information is collected. Events are characterized by certain design conditions and they occur when the conditions are met, for instance, when a certain state threshold is reached. By systematically adjusting the time of learning and control decisions, the proposed framework can potentially reduce the variance in learning, and consequently, improve the control process. We formulate the micro-climate control problem based on semi-Markov decision processes that allow for variable-time state transitions and decision making. Using extended policy gradient theorems and temporal difference methods in a reinforcement learning set-up, we propose two learning algorithms for event-triggered control of micro-climate in buildings. We show the efficacy of our proposed approach via designing a smart learning thermostat that simultaneously optimizes energy consumption and occupants’ comfort in a test building.

Suggested Citation

  • Haji Hosseinloo, Ashkan & Ryzhov, Alexander & Bischi, Aldo & Ouerdane, Henni & Turitsyn, Konstantin & Dahleh, Munther A., 2020. "Data-driven control of micro-climate in buildings: An event-triggered reinforcement learning approach," Applied Energy, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920309636
    DOI: 10.1016/j.apenergy.2020.115451
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920309636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115451?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kazmi, Hussain & Mehmood, Fahad & Lodeweyckx, Stefan & Driesen, Johan, 2018. "Gigawatt-hour scale savings on a budget of zero: Deep reinforcement learning based optimal control of hot water systems," Energy, Elsevier, vol. 144(C), pages 159-168.
    2. Kazmi, Hussain & Suykens, Johan & Balint, Attila & Driesen, Johan, 2019. "Multi-agent reinforcement learning for modeling and control of thermostatically controlled loads," Applied Energy, Elsevier, vol. 238(C), pages 1022-1035.
    3. Yang, Lei & Nagy, Zoltan & Goffin, Philippe & Schlueter, Arno, 2015. "Reinforcement learning for optimal control of low exergy buildings," Applied Energy, Elsevier, vol. 156(C), pages 577-586.
    4. Frederik Ruelens & Sandro Iacovella & Bert J. Claessens & Ronnie Belmans, 2015. "Learning Agent for a Heat-Pump Thermostat with a Set-Back Strategy Using Model-Free Reinforcement Learning," Energies, MDPI, vol. 8(8), pages 1-19, August.
    5. Smarra, Francesco & Jain, Achin & de Rubeis, Tullio & Ambrosini, Dario & D’Innocenzo, Alessandro & Mangharam, Rahul, 2018. "Data-driven model predictive control using random forests for building energy optimization and climate control," Applied Energy, Elsevier, vol. 226(C), pages 1252-1272.
    6. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    7. Li, Yanjie & Cao, Fang, 2013. "A basic formula for performance gradient estimation of semi-Markov decision processes," European Journal of Operational Research, Elsevier, vol. 224(2), pages 333-339.
    8. Dounis, A.I. & Caraiscos, C., 2009. "Advanced control systems engineering for energy and comfort management in a building environment--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1246-1261, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heidari, Amirreza & Maréchal, François & Khovalyg, Dolaana, 2022. "Reinforcement Learning for proactive operation of residential energy systems by learning stochastic occupant behavior and fluctuating solar energy: Balancing comfort, hygiene and energy use," Applied Energy, Elsevier, vol. 318(C).
    2. Yang, Ting & Zhao, Liyuan & Li, Wei & Wu, Jianzhong & Zomaya, Albert Y., 2021. "Towards healthy and cost-effective indoor environment management in smart homes: A deep reinforcement learning approach," Applied Energy, Elsevier, vol. 300(C).
    3. Hernández, José L. & de Miguel, Ignacio & Vélez, Fredy & Vasallo, Ali, 2024. "Challenges and opportunities in European smart buildings energy management: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Sayfutdinov, Timur & Patsios, Charalampos & Greenwood, David & Peker, Meltem & Sarantakos, Ilias, 2022. "Optimization-based modelling and game-theoretic framework for techno-economic analysis of demand-side flexibility: A real case study," Applied Energy, Elsevier, vol. 321(C).
    5. Heidari, Amirreza & Maréchal, François & Khovalyg, Dolaana, 2022. "An occupant-centric control framework for balancing comfort, energy use and hygiene in hot water systems: A model-free reinforcement learning approach," Applied Energy, Elsevier, vol. 312(C).
    6. Seppo Sierla & Heikki Ihasalo & Valeriy Vyatkin, 2022. "A Review of Reinforcement Learning Applications to Control of Heating, Ventilation and Air Conditioning Systems," Energies, MDPI, vol. 15(10), pages 1-25, May.
    7. Shangguan, Xing-Chen & He, Yong & Zhang, Chuan-Ke & Jiang, Lin & Wu, Min, 2022. "Load frequency control of time-delayed power system based on event-triggered communication scheme," Applied Energy, Elsevier, vol. 308(C).
    8. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    9. Cai, Qingsen & Luo, XingQi & Wang, Peng & Gao, Chunyang & Zhao, Peiyu, 2022. "Hybrid model-driven and data-driven control method based on machine learning algorithm in energy hub and application," Applied Energy, Elsevier, vol. 305(C).
    10. Halhoul Merabet, Ghezlane & Essaaidi, Mohamed & Ben Haddou, Mohamed & Qolomany, Basheer & Qadir, Junaid & Anan, Muhammad & Al-Fuqaha, Ala & Abid, Mohamed Riduan & Benhaddou, Driss, 2021. "Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhe & Hong, Tianzhen, 2020. "Reinforcement learning for building controls: The opportunities and challenges," Applied Energy, Elsevier, vol. 269(C).
    2. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    3. Clara Ceccolini & Roozbeh Sangi, 2022. "Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review," Energies, MDPI, vol. 15(4), pages 1-30, February.
    4. Perera, A.T.D. & Kamalaruban, Parameswaran, 2021. "Applications of reinforcement learning in energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Seppo Sierla & Heikki Ihasalo & Valeriy Vyatkin, 2022. "A Review of Reinforcement Learning Applications to Control of Heating, Ventilation and Air Conditioning Systems," Energies, MDPI, vol. 15(10), pages 1-25, May.
    6. Noye, Sarah & Mulero Martinez, Rubén & Carnieletto, Laura & De Carli, Michele & Castelruiz Aguirre, Amaia, 2022. "A review of advanced ground source heat pump control: Artificial intelligence for autonomous and adaptive control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Lydon, G.P. & Hofer, J. & Svetozarevic, B. & Nagy, Z. & Schlueter, A., 2017. "Coupling energy systems with lightweight structures for a net plus energy building," Applied Energy, Elsevier, vol. 189(C), pages 310-326.
    8. Heidari, Amirreza & Maréchal, François & Khovalyg, Dolaana, 2022. "Reinforcement Learning for proactive operation of residential energy systems by learning stochastic occupant behavior and fluctuating solar energy: Balancing comfort, hygiene and energy use," Applied Energy, Elsevier, vol. 318(C).
    9. Liu, Yang & Yu, Nanpeng & Wang, Wei & Guan, Xiaohong & Xu, Zhanbo & Dong, Bing & Liu, Ting, 2018. "Coordinating the operations of smart buildings in smart grids," Applied Energy, Elsevier, vol. 228(C), pages 2510-2525.
    10. Schmidt, Mischa & Åhlund, Christer, 2018. "Smart buildings as Cyber-Physical Systems: Data-driven predictive control strategies for energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 742-756.
    11. Kathirgamanathan, Anjukan & De Rosa, Mattia & Mangina, Eleni & Finn, Donal P., 2021. "Data-driven predictive control for unlocking building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Paiho, Satu & Kiljander, Jussi & Sarala, Roope & Siikavirta, Hanne & Kilkki, Olli & Bajpai, Arpit & Duchon, Markus & Pahl, Marc-Oliver & Wüstrich, Lars & Lübben, Christian & Kirdan, Erkin & Schindler,, 2021. "Towards cross-commodity energy-sharing communities – A review of the market, regulatory, and technical situation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    14. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    15. Correa-Jullian, Camila & López Droguett, Enrique & Cardemil, José Miguel, 2020. "Operation scheduling in a solar thermal system: A reinforcement learning-based framework," Applied Energy, Elsevier, vol. 268(C).
    16. Shen, Rendong & Zhong, Shengyuan & Wen, Xin & An, Qingsong & Zheng, Ruifan & Li, Yang & Zhao, Jun, 2022. "Multi-agent deep reinforcement learning optimization framework for building energy system with renewable energy," Applied Energy, Elsevier, vol. 312(C).
    17. Lei, Yue & Zhan, Sicheng & Ono, Eikichi & Peng, Yuzhen & Zhang, Zhiang & Hasama, Takamasa & Chong, Adrian, 2022. "A practical deep reinforcement learning framework for multivariate occupant-centric control in buildings," Applied Energy, Elsevier, vol. 324(C).
    18. Andrew Chapman & Timothy Fraser & Melanie Dennis, 2019. "Investigating Ties between Energy Policy and Social Equity Research: A Citation Network Analysis," Social Sciences, MDPI, vol. 8(5), pages 1-18, April.
    19. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    20. Muhammad Fayaz & DoHyeun Kim, 2018. "Energy Consumption Optimization and User Comfort Management in Residential Buildings Using a Bat Algorithm and Fuzzy Logic," Energies, MDPI, vol. 11(1), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920309636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.