IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v274y2020ics030626192030756x.html
   My bibliography  Save this article

Optimal sizing design of an isolated stand-alone hybrid wind-hydrogen system for a zero-energy house

Author

Listed:
  • Firtina-Ertis, Irem
  • Acar, Canan
  • Erturk, Ercan

Abstract

This study examines the feasibility and optimal sizing design of a stand-alone wind/hydrogen hybrid power system for a house in Catalca, Istanbul, Turkey. The considered house is a remote house with no connection to the power grid lines. The designed system guarantees uninterrupted, reliable continuous power to the house at any time. The site location of Catalca is very suitable for wind energy, and the considered hybrid wind/electrolyzer/fuel-cell power system is a good alternative for supplying the energy need of the house. If the reliability of the power supply is crucial, then optimal sizing of the components, wind turbine, electrolyzer, storage tank, and the fuel-cell stack is critical. In this study, a stand-alone hybrid power system with a wind turbine, electrolyzer, storage tank, and fuel-cell stack that can supply the house continuously is sized using 10-minute averaged wind data of the site and consumption data of the house. As a usual practice in the wind market, for stand-alone houses, usually wind turbines with rated powers equal to almost three times the average power consumption is used. Our analysis showed that when an uninterrupted continuous power supply is a necessity, wind turbines with rated powers of at least ten times the average consumption should be used. Moreover, our analysis showed that such a study that accounts for calculations of all system components in small timeframes is essential to ensure uninterrupted continuous power supply. And the results show that the system is capable of providing uninterrupted power to the house all-year long.

Suggested Citation

  • Firtina-Ertis, Irem & Acar, Canan & Erturk, Ercan, 2020. "Optimal sizing design of an isolated stand-alone hybrid wind-hydrogen system for a zero-energy house," Applied Energy, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:appene:v:274:y:2020:i:c:s030626192030756x
    DOI: 10.1016/j.apenergy.2020.115244
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192030756X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115244?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O. Schmidt & A. Hawkes & A. Gambhir & I. Staffell, 2017. "The future cost of electrical energy storage based on experience rates," Nature Energy, Nature, vol. 2(8), pages 1-8, August.
    2. Alvarez-Mendoza, Fernanda & Bacher, Peder & Madsen, Henrik & Angeles-Camacho, César, 2017. "Stochastic model of wind-fuel cell for a semi-dispatchable power generation," Applied Energy, Elsevier, vol. 193(C), pages 139-148.
    3. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    4. Enevoldsen, Peter, 2018. "A socio-technical framework for examining the consequences of deforestation: A case study of wind project development in Northern Europe," Energy Policy, Elsevier, vol. 115(C), pages 138-147.
    5. Del Boca, Daniela & Pronzato, Chiara & Sorrenti, Giuseppe, 2020. "Cash Transfer Programs and Household Labor Supply," CEPR Discussion Papers 14541, C.E.P.R. Discussion Papers.
    6. Guney, Mukrimin Sevket & Tepe, Yalcin, 2017. "Classification and assessment of energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1187-1197.
    7. Bornapour, Mosayeb & Hooshmand, Rahmat-Allah & Khodabakhshian, Amin & Parastegari, Moein, 2017. "Optimal stochastic coordinated scheduling of proton exchange membrane fuel cell-combined heat and power, wind and photovoltaic units in micro grids considering hydrogen storage," Applied Energy, Elsevier, vol. 202(C), pages 308-322.
    8. Pedrazzi, Simone & Zini, Gabriele & Tartarini, Paolo, 2012. "Modelling and simulation of a wind-hydrogen CHP system with metal hydride storage," Renewable Energy, Elsevier, vol. 46(C), pages 14-22.
    9. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    10. Kourkoumpas, Dimitrios-Sotirios & Benekos, Georgios & Nikolopoulos, Nikolaos & Karellas, Sotirios & Grammelis, Panagiotis & Kakaras, Emmanouel, 2018. "A review of key environmental and energy performance indicators for the case of renewable energy systems when integrated with storage solutions," Applied Energy, Elsevier, vol. 231(C), pages 380-398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiu, Rui & Liao, Qi & Klemeš, Jiří Jaromír & Liang, Yongtu & Guo, Zhichao & Chen, Jinyu & Zhang, Haoran, 2022. "Roadmap to urban energy internet with wind electricity-natural gas nexus: Economic and environmental analysis," Energy, Elsevier, vol. 245(C).
    2. Liponi, Angelica & Frate, Guido Francesco & Baccioli, Andrea & Ferrari, Lorenzo & Desideri, Umberto, 2022. "Impact of wind speed distribution and management strategy on hydrogen production from wind energy," Energy, Elsevier, vol. 256(C).
    3. Chennaif, Mohammed & Maaouane, Mohamed & Zahboune, Hassan & Elhafyani, Mohammed & Zouggar, Smail, 2022. "Tri-objective techno-economic sizing optimization of Off-grid and On-grid renewable energy systems using Electric system Cascade Extended analysis and system Advisor Model," Applied Energy, Elsevier, vol. 305(C).
    4. Li, Yangyang & Zhang, Tao & Deng, Xintao & Liu, Biao & Ma, Jugang & Yang, Fuyuan & Ouyang, Minggao, 2022. "Active pressure and flow rate control of alkaline water electrolyzer based on wind power prediction and 100% energy utilization in off-grid wind-hydrogen coupling system," Applied Energy, Elsevier, vol. 328(C).
    5. Pierre-Antoine Muselli & Jean-Nicolas Antoniotti & Marc Muselli, 2022. "Climate Change Impacts on Gaseous Hydrogen (H 2 ) Potential Produced by Photovoltaic Electrolysis for Stand-Alone or Grid Applications in Europe," Energies, MDPI, vol. 16(1), pages 1-21, December.
    6. Javed, Muhammad Shahzad & Jurasz, Jakub & McPherson, Madeleine & Dai, Yanjun & Ma, Tao, 2022. "Quantitative evaluation of renewable-energy-based remote microgrids: curtailment, load shifting, and reliability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    7. Eva M. Urbano & Victor Martinez-Viol & Konstantinos Kampouropoulos & Luis Romeral, 2021. "Energy-Investment Decision-Making for Industry: Quantitative and Qualitative Risks Integrated Analysis," Sustainability, MDPI, vol. 13(12), pages 1-30, June.
    8. Makhdoomi, Sina & Askarzadeh, Alireza, 2021. "Impact of solar tracker and energy storage system on sizing of hybrid energy systems: A comparison between diesel/PV/PHS and diesel/PV/FC," Energy, Elsevier, vol. 231(C).
    9. Shi, Mengshu & Huang, Yuansheng, 2022. "Research on investment planning of power-hydrogen system considering the multi-stakeholder benefit," Renewable Energy, Elsevier, vol. 199(C), pages 1408-1423.
    10. Stanley, Andrew P.J. & King, Jennifer, 2022. "Optimizing the physical design and layout of a resilient wind, solar, and storage hybrid power plant," Applied Energy, Elsevier, vol. 317(C).
    11. Mokhtara, Charafeddine & Negrou, Belkhir & Settou, Noureddine & Settou, Belkhir & Samy, Mohamed Mahmoud, 2021. "Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria," Energy, Elsevier, vol. 219(C).
    12. Schmeling, Lucas & Schönfeldt, Patrik & Klement, Peter & Vorspel, Lena & Hanke, Benedikt & von Maydell, Karsten & Agert, Carsten, 2022. "A generalised optimal design methodology for distributed energy systems," Renewable Energy, Elsevier, vol. 200(C), pages 1223-1239.
    13. He, Yingdong & Zhou, Yuekuan & Wang, Zhe & Liu, Jia & Liu, Zhengxuan & Zhang, Guoqiang, 2021. "Quantification on fuel cell degradation and techno-economic analysis of a hydrogen-based grid-interactive residential energy sharing network with fuel-cell-powered vehicles," Applied Energy, Elsevier, vol. 303(C).
    14. Buenfil Román, V. & Espadas Baños, G.A. & Quej Solís, C.A. & Flota-Bañuelos, M.I. & Rivero, M. & Escalante Soberanis, M.A., 2022. "Comparative study on the cost of hybrid energy and energy storage systems in remote rural communities near Yucatan, Mexico," Applied Energy, Elsevier, vol. 308(C).
    15. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2021. "Energy equipment sizing and operation optimisation for prosumer industrial SMEs – A lifetime approach," Applied Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Apostolou, Dimitrios & Enevoldsen, Peter, 2019. "The past, present and potential of hydrogen as a multifunctional storage application for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 917-929.
    2. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Khiadani, Mehdi & Das, Choton K., 2019. "An improved mathematical model for a pumped hydro storage system considering electrical, mechanical, and hydraulic losses," Applied Energy, Elsevier, vol. 247(C), pages 228-236.
    4. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    5. Gulam Smdani & Muhammad Remanul Islam & Ahmad Naim Ahmad Yahaya & Sairul Izwan Bin Safie, 2023. "Performance Evaluation Of Advanced Energy Storage Systems: A Review," Energy & Environment, , vol. 34(4), pages 1094-1141, June.
    6. Culcasi, Andrea & Gurreri, Luigi & Zaffora, Andrea & Cosenza, Alessandro & Tamburini, Alessandro & Micale, Giorgio, 2020. "On the modelling of an Acid/Base Flow Battery: An innovative electrical energy storage device based on pH and salinity gradients," Applied Energy, Elsevier, vol. 277(C).
    7. Daniel Akinyele & Juri Belikov & Yoash Levron, 2017. "Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems," Energies, MDPI, vol. 10(11), pages 1-39, November.
    8. Bai, Bo & Xiong, Siqin & Song, Bo & Xiaoming, Ma, 2019. "Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 213-229.
    9. Ioannis Mexis & Grazia Todeschini, 2020. "Battery Energy Storage Systems in the United Kingdom: A Review of Current State-of-the-Art and Future Applications," Energies, MDPI, vol. 13(14), pages 1-31, July.
    10. Bullich-Massagué, Eduard & Cifuentes-García, Francisco-Javier & Glenny-Crende, Ignacio & Cheah-Mañé, Marc & Aragüés-Peñalba, Mònica & Díaz-González, Francisco & Gomis-Bellmunt, Oriol, 2020. "A review of energy storage technologies for large scale photovoltaic power plants," Applied Energy, Elsevier, vol. 274(C).
    11. Diana Enescu & Gianfranco Chicco & Radu Porumb & George Seritan, 2020. "Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends," Energies, MDPI, vol. 13(2), pages 1-21, January.
    12. Tronchin, Lamberto & Manfren, Massimiliano & Nastasi, Benedetto, 2018. "Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 341-353.
    13. Saad, Y. & Younes, R. & Abboudi, S. & Ilinca, A., 2018. "Hydro-pneumatic storage for wind-diesel electricity generation in remote sites," Applied Energy, Elsevier, vol. 231(C), pages 1159-1178.
    14. Gaurav Chaudhary & Jacob J. Lamb & Odne S. Burheim & Bjørn Austbø, 2021. "Review of Energy Storage and Energy Management System Control Strategies in Microgrids," Energies, MDPI, vol. 14(16), pages 1-26, August.
    15. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    16. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    17. Alexandru Ciocan & Cosmin Ungureanu & Alin Chitu & Elena Carcadea & George Darie, 2020. "Electrical Longboard for Everyday Urban Commuting," Sustainability, MDPI, vol. 12(19), pages 1-14, September.
    18. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    20. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:274:y:2020:i:c:s030626192030756x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.