IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v269y2020ics0306261920306498.html
   My bibliography  Save this article

Comparing water footprint and water scarcity footprint of energy demand in China’s six megacities

Author

Listed:
  • Liao, Xiawei
  • Zhao, Xu
  • Liu, Wenfeng
  • Li, Ruoshui
  • Wang, Xiaoxi
  • Wang, Wenpeng
  • Tillotson, Martin R.

Abstract

Water is required throughout the life-cycle processes of energy production to meet the growing energy demands in China’s megacities. However, the spatially explicit impact on water scarcity both inside and outside the megacity boundaries from megacities’ energy demands remains unknown. We quantified and compared the water footprint and water scarcity footprint for final energy demand (WFE and WSFE) in China’s megacities from a consumption perspective. Six acknowledged megacities, i.e. Beijing, Tianjin, Shanghai, Chongqing, Shenzhen and Guangzhou, were evaluated with an extended multi-region input–output model. The results showed that these megacities were endowed with only 2.60% of the national available water resources, but their WFE (WSFE) made up nearly 14.00% (13.50%) of the national total. The megacities located in Northern China generated a larger WSFE in their WFE than the cities in Southern China. Energy demands in these megacities were heavily dependent on scarce water sourced from beyond their administrative boundaries, together importing 84.10% of WSFE from elsewhere. Electricity demand dominated the volumetric water consumption, representing 52.00% of the WFE. The distribution was different for scarce water consumption, with coal demand generating 34.00% of total WSFE, followed by electricity (31.00%) and petroleum (26.00%). Although Northern China is faced with dire water scarcity, its scarce water is still being predominantly outsourced to support energy demands in both Northern and Southern megacities, mainly due to their coal and petroleum reserves. Location-specific pathways and foci should be applied for different megacities to decouple their energy demands and their scarce water consumption.

Suggested Citation

  • Liao, Xiawei & Zhao, Xu & Liu, Wenfeng & Li, Ruoshui & Wang, Xiaoxi & Wang, Wenpeng & Tillotson, Martin R., 2020. "Comparing water footprint and water scarcity footprint of energy demand in China’s six megacities," Applied Energy, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:appene:v:269:y:2020:i:c:s0306261920306498
    DOI: 10.1016/j.apenergy.2020.115137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920306498
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Xiaomin & Jiang, Xiaoyun & Zhang, Tingting & Huang, Zhen, 2020. "Study on impact of electricity production on regional water resource in China by water footprint," Renewable Energy, Elsevier, vol. 152(C), pages 165-178.
    2. Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.
    3. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    4. Peters, Glen P., 2008. "From production-based to consumption-based national emission inventories," Ecological Economics, Elsevier, vol. 65(1), pages 13-23, March.
    5. Lenzen, Manfred & Moran, Daniel & Bhaduri, Anik & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2013. "International trade of scarce water," Ecological Economics, Elsevier, vol. 94(C), pages 78-85.
    6. Zheng, Xinzhu & Wang, Can & Cai, Wenjia & Kummu, Matti & Varis, Olli, 2016. "The vulnerability of thermoelectric power generation to water scarcity in China: Current status and future scenarios for power planning and climate change," Applied Energy, Elsevier, vol. 171(C), pages 444-455.
    7. Chai, Li & Liao, Xiawei & Yang, Liu & Yan, Xianglin, 2018. "Assessing life cycle water use and pollution of coal-fired power generation in China using input-output analysis," Applied Energy, Elsevier, vol. 231(C), pages 951-958.
    8. Chen, Shaoqing & Chen, Bin, 2016. "Urban energy–water nexus: A network perspective," Applied Energy, Elsevier, vol. 184(C), pages 905-914.
    9. Facchini, Angelo & Kennedy, Chris & Stewart, Iain & Mele, Renata, 2017. "The energy metabolism of megacities," Applied Energy, Elsevier, vol. 186(P2), pages 86-95.
    10. Pan, Lingying & Liu, Pei & Ma, Linwei & Li, Zheng, 2012. "A supply chain based assessment of water issues in the coal industry in China," Energy Policy, Elsevier, vol. 48(C), pages 93-102.
    11. Shinjiro Yano & Naota Hanasaki & Norihiro Itsubo & Taikan Oki, 2015. "Water Scarcity Footprints by Considering the Differences in Water Sources," Sustainability, MDPI, vol. 7(8), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel Mocholi-Arce & Ramon Sala-Garrido & Maria Molinos-Senante & Alexandros Maziotis, 2022. "Measuring the eco-efficiency of the provision of drinking water by two-stage network data envelopment analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12883-12899, November.
    2. Ruixin Gou & Guiping He & Bo Yu & Yanli Xiao & Zhiwei Luo & Yulei Xie, 2022. "An Integrated Energy System Operation Optimization Model for Water Consumption Control Analysis in Park Scale from the Perspective of Energy–Water Nexus," Energies, MDPI, vol. 15(12), pages 1-12, June.
    3. Ramon Sala-Garrido & Manuel Mocholi-Arce & Maria Molinos-Senante & Michail Smyrnakis & Alexandros Maziotis, 2021. "Eco-Efficiency of the English and Welsh Water Companies: A Cross Performance Assessment," IJERPH, MDPI, vol. 18(6), pages 1-17, March.
    4. Li, Junjie & Yan, Yulong & Wang, Yirong & Zhang, Yifu & Shao, Lianwei & Li, Menggang, 2024. "Spatial-successive transfer of virtual scarcity water along China's coal-based electric chain," Energy, Elsevier, vol. 288(C).
    5. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.
    6. Lu Liu & Chengzhao You, 2022. "The Driving Force of CO2 Reduction in China’s Industries," Financial Economics Letters, Anser Press, vol. 1(1), pages 37-44, December.
    7. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2021. "The energy-water nexus of China’s interprovincial and seasonal electric power transmission," Applied Energy, Elsevier, vol. 286(C).
    8. Xuechun Yang & Sai Liang & Jianchuan Qi & Cuiyang Feng & Shen Qu & Ming Xu, 2021. "Identifying sectoral impacts on global scarce water uses from multiple perspectives," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1503-1517, December.
    9. Su, Dan & Cao, Yu & Wang, Jiayi & Fang, Xiaoqian & Wu, Qing, 2023. "Toward constructing an eco-account of cultivated land by quantifying the resources flow and eco-asset transfer in China," Land Use Policy, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    2. Wu, X.D. & Chen, G.Q., 2017. "Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China," Applied Energy, Elsevier, vol. 195(C), pages 125-136.
    3. Li, Haoran & Cui, Xueqin & Hui, Jingxuan & He, Gang & Weng, Yuwei & Nie, Yaoyu & Wang, Can & Cai, Wenjia, 2021. "Catchment-level water stress risk of coal power transition in China under 2℃/1.5℃ targets," Applied Energy, Elsevier, vol. 294(C).
    4. Yuqi Su & Yi Liang & Li Chai & Zixuan Han & Sai Ma & Jiaxuan Lyu & Zhiping Li & Liu Yang, 2019. "Water Degradation by China’s Fossil Fuels Production: A Life Cycle Assessment Based on an Input–Output Model," Sustainability, MDPI, vol. 11(15), pages 1-12, July.
    5. Muhammet Enis Bulak & Murat Kucukvar, 2022. "How ecoefficient is European food consumption? A frontier‐based multiregional input–output analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 817-832, October.
    6. Hanfei Wu & Ruochen Jin & Ao Liu & Shiyun Jiang & Li Chai, 2022. "Savings and Losses of Scarce Virtual Water in the International Trade of Wheat, Maize, and Rice," IJERPH, MDPI, vol. 19(7), pages 1-12, March.
    7. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    8. Zhang, Xiaohong & Qi, Yan & Wang, Yanqing & Wu, Jun & Lin, Lili & Peng, Hong & Qi, Hui & Yu, Xiaoyu & Zhang, Yanzong, 2016. "Effect of the tap water supply system on China's economy and energy consumption, and its emissions’ impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 660-671.
    9. Mengyao Han & Shuchang Li, 2021. "Transfer Patterns and Drivers of Embodied Agricultural Land within China: Based on Multi-Regional Decomposition Analysis," Land, MDPI, vol. 10(2), pages 1-16, February.
    10. Wang, Saige & Liu, Yating & Chen, Bin, 2018. "Multiregional input–output and ecological network analyses for regional energy–water nexus within China," Applied Energy, Elsevier, vol. 227(C), pages 353-364.
    11. Liu, Yating & Chen, Bin, 2020. "Water-energy scarcity nexus risk in the national trade system based on multiregional input-output and network environ analyses," Applied Energy, Elsevier, vol. 268(C).
    12. Li, Meng & Meng, Bo & Gao, Yuning & Wang, Zhi & Zhang, Yaxiong & Sun, Yongping, 2022. "Tracing CO2 emissions in global value chains: Multinationals vs. domestically-owned firms," Sustainable Global Supply Chains Discussion Papers 2, Research Network Sustainable Global Supply Chains.
    13. Gino Sturla & Lorenzo Ciulla & Benedetto Rocchi, 2022. "Italy's Volumetric, Scarce and Social-scarce water footprint: a Hydro Economic Input-Output Analysis," Working Papers - Economics wp2022_17.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    14. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    15. Li, Y.L. & Chen, B. & Chen, G.Q., 2020. "Carbon network embodied in international trade: Global structural evolution and its policy implications," Energy Policy, Elsevier, vol. 139(C).
    16. Duan, Cuncun & Chen, Bin, 2020. "Driving factors of water-energy nexus in China," Applied Energy, Elsevier, vol. 257(C).
    17. Chu, Chu & Ritter, William & Sun, Xiaohui, 2019. "Spatial variances of water-energy nexus in China and its implications for provincial resource interdependence," Energy Policy, Elsevier, vol. 125(C), pages 487-502.
    18. Duan, Cuncun & Chen, Bin, 2017. "Energy–water nexus of international energy trade of China," Applied Energy, Elsevier, vol. 194(C), pages 725-734.
    19. Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
    20. Behrouz Pirouz & Stefania Anna Palermo & Mario Maiolo & Natale Arcuri & Patrizia Piro, 2020. "Decreasing Water Footprint of Electricity and Heat by Extensive Green Roofs: Case of Southern Italy," Sustainability, MDPI, vol. 12(23), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:269:y:2020:i:c:s0306261920306498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.