IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v267y2020ics0306261920304116.html
   My bibliography  Save this article

Assessing the demand response capacity of U.S. drinking water treatment plants

Author

Listed:
  • Liu, Yang
  • Mauter, Meagan S.

Abstract

This study assesses the spatio-temporal electricity consumption and demand response (DR) capacity of U.S. drinking water treatment plants (DWTPs). We account for the installed unit processes at each plant, the electricity intensity of each unit process, the compatibility of a unit process with DR participation, and the approximate volume of water treated at each DWTP during different months of the year. We then perform a parametric analysis to calculate the shiftable load from DWTPs as a function of the length of the load curtailment period (TC), the ratio of the maximum treatment capacity to the peak-day demands of DWTPs (rmax), and the time of the year. The results of the parametric analysis suggest that the total DR capacity of U.S. DWTPs in 2018 varied between 140 MW and 610 MW as a function of TC, rmax and time of the year. We also find that the total electricity use by DWTPs has increased 25% from 2013 to 2018, largely due to the rapidly increasing adoption rate of reverse osmosis processes. These results indicate that DWTPs provide only minimal DR capacity in most locations in the U.S, but that further electrification of the drinking water treatment sector may significantly increase this DR capacity in critical geographic locations during peak summer months.

Suggested Citation

  • Liu, Yang & Mauter, Meagan S., 2020. "Assessing the demand response capacity of U.S. drinking water treatment plants," Applied Energy, Elsevier, vol. 267(C).
  • Handle: RePEc:eee:appene:v:267:y:2020:i:c:s0306261920304116
    DOI: 10.1016/j.apenergy.2020.114899
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920304116
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114899?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molinos-Senante, María & Sala-Garrido, Ramón, 2017. "Energy intensity of treating drinking water: Understanding the influence of factors," Applied Energy, Elsevier, vol. 202(C), pages 275-281.
    2. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    3. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    4. Urooj Asgher & Muhammad Babar Rasheed & Ameena Saad Al-Sumaiti & Atiq Ur-Rahman & Ihsan Ali & Amer Alzaidi & Abdullah Alamri, 2018. "Smart Energy Optimization Using Heuristic Algorithm in Smart Grid with Integration of Solar Energy Sources," Energies, MDPI, vol. 11(12), pages 1-26, December.
    5. Siddiqi, Afreen & Anadon, Laura Diaz, 2011. "The water-energy nexus in Middle East and North Africa," Energy Policy, Elsevier, vol. 39(8), pages 4529-4540, August.
    6. Menke, Ruben & Abraham, Edo & Parpas, Panos & Stoianov, Ivan, 2016. "Demonstrating demand response from water distribution system through pump scheduling," Applied Energy, Elsevier, vol. 170(C), pages 377-387.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ismail Abd-Elaty & Alban Kuriqi & Abeer El Shahawy, 2022. "Environmental rethinking of wastewater drains to manage environmental pollution and alleviate water scarcity," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2353-2380, February.
    2. Luchnikov, I. & Métivier, D. & Ouerdane, H. & Chertkov, M., 2021. "Super-relaxation of space–time-quantized ensemble of energy loads to curtail their synchronization after demand response perturbation," Applied Energy, Elsevier, vol. 285(C).
    3. Sharma, Santosh & Li, Qifeng, 2024. "Decentralized optimization of energy-water nexus based on a mixed-integer boundary compatible algorithm," Applied Energy, Elsevier, vol. 359(C).
    4. Lantao Jing & Enyu Wei & Liang Wang & Jinkuo Li & Qiang Zhang, 2024. "A Multi-Type Dynamic Response Control Strategy for Energy Consumption," Energies, MDPI, vol. 17(13), pages 1-20, June.
    5. Prina, Matteo Giacomo & Groppi, Daniele & Nastasi, Benedetto & Garcia, Davide Astiaso, 2021. "Bottom-up energy system models applied to sustainable islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Zohrabian, Angineh & Sanders, Kelly T., 2021. "Emitting less without curbing usage? Exploring greenhouse gas mitigation strategies in the water industry through load shifting," Applied Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zohrabian, Angineh & Sanders, Kelly T., 2021. "Emitting less without curbing usage? Exploring greenhouse gas mitigation strategies in the water industry through load shifting," Applied Energy, Elsevier, vol. 298(C).
    2. Pauline Macharia & Maria Wirth & Paul Yillia & Norbert Kreuzinger, 2021. "Examining the Relative Impact of Drivers on Energy Input for Municipal Water Supply in Africa," Sustainability, MDPI, vol. 13(15), pages 1-27, July.
    3. Banhidarah, Abdullah Khamis & Al-Sumaiti, Ameena Saad & Wescoat, James L. & Nguyen, Hoach The, 2020. "Electricity-water usage for sustainable development: An analysis of United Arab Emirates farms," Energy Policy, Elsevier, vol. 147(C).
    4. Zhang, Xiaohong & Qi, Yan & Wang, Yanqing & Wu, Jun & Lin, Lili & Peng, Hong & Qi, Hui & Yu, Xiaoyu & Zhang, Yanzong, 2016. "Effect of the tap water supply system on China's economy and energy consumption, and its emissions’ impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 660-671.
    5. Soto-García, M. & Martin-Gorriz, B. & García-Bastida, P.A. & Alcon, F. & Martínez-Alvarez, V., 2013. "Energy consumption for crop irrigation in a semiarid climate (south-eastern Spain)," Energy, Elsevier, vol. 55(C), pages 1084-1093.
    6. Khan, Zarrar & Linares, Pedro & García-González, Javier, 2017. "Integrating water and energy models for policy driven applications. A review of contemporary work and recommendations for future developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1123-1138.
    7. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2015. "Exploring the water-energy nexus in Brazil: The electricity use for water supply," Energy, Elsevier, vol. 85(C), pages 415-432.
    8. Lee, Mengshan & Keller, Arturo A. & Chiang, Pen-Chi & Den, Walter & Wang, Hongtao & Hou, Chia-Hung & Wu, Jiang & Wang, Xin & Yan, Jinyue, 2017. "Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks," Applied Energy, Elsevier, vol. 205(C), pages 589-601.
    9. Mounir, Adil & Mascaro, Giuseppe & White, Dave D., 2019. "A metropolitan scale analysis of the impacts of future electricity mix alternatives on the water-energy nexus," Applied Energy, Elsevier, vol. 256(C).
    10. Chu, Chu & Ritter, William & Sun, Xiaohui, 2019. "Spatial variances of water-energy nexus in China and its implications for provincial resource interdependence," Energy Policy, Elsevier, vol. 125(C), pages 487-502.
    11. Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
    12. Li, Xian & Yang, Lili & Zheng, Heran & Shan, Yuli & Zhang, Zongyong & Song, Malin & Cai, Bofeng & Guan, Dabo, 2019. "City-level water-energy nexus in Beijing-Tianjin-Hebei region," Applied Energy, Elsevier, vol. 235(C), pages 827-834.
    13. Xue, Jingyan & Liu, Gengyuan & Casazza, Marco & Ulgiati, Sergio, 2018. "Development of an urban FEW nexus online analyzer to support urban circular economy strategy planning," Energy, Elsevier, vol. 164(C), pages 475-495.
    14. Meng, Fanxin & Liu, Gengyuan & Liang, Sai & Su, Meirong & Yang, Zhifeng, 2019. "Critical review of the energy-water-carbon nexus in cities," Energy, Elsevier, vol. 171(C), pages 1017-1032.
    15. Gu, Yifan & Li, Yue & Li, Xuyao & Luo, Pengzhou & Wang, Hongtao & Robinson, Zoe P. & Wang, Xin & Wu, Jiang & Li, Fengting, 2017. "The feasibility and challenges of energy self-sufficient wastewater treatment plants," Applied Energy, Elsevier, vol. 204(C), pages 1463-1475.
    16. Elshkaki, Ayman, 2019. "Material-energy-water-carbon nexus in China’s electricity generation system up to 2050," Energy, Elsevier, vol. 189(C).
    17. Vieira, Abel S. & Beal, Cara D. & Ghisi, Enedir & Stewart, Rodney A., 2014. "Energy intensity of rainwater harvesting systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 225-242.
    18. Wakeel, Muhammad & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2016. "Energy consumption for water use cycles in different countries: A review," Applied Energy, Elsevier, vol. 178(C), pages 868-885.
    19. Kahsar, Rudy, 2020. "The potential for brackish water use in thermoelectric power generation in the American southwest," Energy Policy, Elsevier, vol. 137(C).
    20. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:267:y:2020:i:c:s0306261920304116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.