IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v263y2020ics0306261920301434.html
   My bibliography  Save this article

The origin, transport, and evolution of ash in engine particulate filters

Author

Listed:
  • Wang, Yujun
  • Kamp, Carl J.
  • Wang, Yuesen
  • Toops, Todd J.
  • Su, Changsheng
  • Wang, Ruoqian
  • Gong, Jian
  • Wong, Victor W.

Abstract

Engine particulate filters have been widely applied across the world to control engine exhaust particulate matter (or particulate number) emissions. With increasing vehicle mileage, ash accumulation deteriorates vehicle fuel economy and complicates on-board control. Extending filter service life with ash loading has significant economic and environmental impacts. Many studies have been conducted in characterizing ash accumulation and evaluating its impacts on filter performance. However, comprehensive reviews covering all the key issues in the field are rather rare. This paper reviews the extensive prior research on filter ash, and not only summarizes the experimental observations but also elucidates the fundamental mechanisms. The review covers the areas of ash origin, accumulation, transport, evolution, and artificial acceleration methods. The previously reported data of ash properties is compiled and analyzed. The advantages and disadvantages of ash acceleration approaches are also discussed in detail. Based on the cumulative understanding, a few potential ways to improve ash management are discussed in this paper. In short, the present work systematically reviews the previous observations and understanding of ash aging in particulate filters and identifies areas that need further research, which can be useful guidance for future studies.

Suggested Citation

  • Wang, Yujun & Kamp, Carl J. & Wang, Yuesen & Toops, Todd J. & Su, Changsheng & Wang, Ruoqian & Gong, Jian & Wong, Victor W., 2020. "The origin, transport, and evolution of ash in engine particulate filters," Applied Energy, Elsevier, vol. 263(C).
  • Handle: RePEc:eee:appene:v:263:y:2020:i:c:s0306261920301434
    DOI: 10.1016/j.apenergy.2020.114631
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920301434
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E, Jiaqiang & Zhao, Xiaohuan & Liu, Guanlin & Zhang, Bin & Zuo, Qingsong & Wei, Kexiang & Li, Hongmei & Han, Dandan & Gong, Jinke, 2019. "Effects analysis on optimal microwave energy consumption in the heating process of composite regeneration for the diesel particulate filter," Applied Energy, Elsevier, vol. 254(C).
    2. Jiaqiang, E & Zhao, Xiaohuan & Xie, Longfu & Zhang, Bin & Chen, Jingwei & Zuo, Qingsong & Han, Dandan & Hu, Wenyu & Zhang, Zhiqing, 2019. "Performance enhancement of microwave assisted regeneration in a wall-flow diesel particulate filter based on field synergy theory," Energy, Elsevier, vol. 169(C), pages 719-729.
    3. Qian, Yong & Li, Zilong & Yu, Liang & Wang, Xiaole & Lu, Xingcai, 2019. "Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines," Applied Energy, Elsevier, vol. 238(C), pages 1269-1298.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Attia, Ali M.A. & Kulchitskiy, A.R. & Nour, Mohamed & El-Seesy, Ahmed I. & Nada, Sameh A., 2022. "The influence of castor biodiesel blending ratio on engine performance including the determined diesel particulate matters composition," Energy, Elsevier, vol. 239(PA).
    2. Zhao, Xiaohuan & Zuo, Hongyan & Jia, Guohai, 2022. "Effect analysis on pressure sensitivity performance of diesel particulate filter for heavy-duty truck diesel engine by the nonlinear soot regeneration combustion pressure model," Energy, Elsevier, vol. 257(C).
    3. Zhang, Bin & Li, Xuewei & Tang, Shanhong & Wan, Qin & Jia, Guohai & Liu, Bo & Li, Shijun, 2023. "Effects analysis on hydrocarbon removal performance of an adsorptive catalytic gasoline particulate filter in the gasoline engine during cold start," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zuo, Qingsong & Xie, Yong & E, Jiaqiang & Zhu, Xinning & Zhang, Bin & Tang, Yuanyou & Zhu, Guohui & Wang, Zhiqi & Zhang, Jianping, 2020. "Effect of different exhaust parameters on NO conversion efficiency enhancement of a dual-carrier catalytic converter in the gasoline engine," Energy, Elsevier, vol. 191(C).
    2. Zhao, Xiaohuan & E, Jiaqiang & Zhang, Zhiqing & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Leng, Erwei & Han, Dandan & Hu, Wenyu, 2020. "A review on heat enhancement in thermal energy conversion and management using Field Synergy Principle," Applied Energy, Elsevier, vol. 257(C).
    3. Zuo, Qingsong & Xie, Yong & Zhu, Guohui & Wei, Kexiang & Zhang, Bin & Chen, Wei & Tang, Yuanyou & Wang, Zhiqi, 2021. "Investigations on a new C-GPFs with electric heating for enhancing the integrated regeneration performance under critical parameters," Energy, Elsevier, vol. 225(C).
    4. Zhao, Xiaohuan & Jiang, Jiang & Zuo, Hongyan & Mao, Zhengsong, 2023. "Performance analysis of diesel particulate filter thermoelectric conversion mobile energy storage system under engine conditions of low-speed and light-load," Energy, Elsevier, vol. 282(C).
    5. Ye, Jiahao & E, Jiaqiang & Peng, Qingguo, 2023. "Effects of porosity setting and multilayers of diesel particulate filter on the improvement of regeneration performance," Energy, Elsevier, vol. 263(PE).
    6. Zhu, Xinning & Zuo, Qingsong & Tang, Yuanyou & Xie, Yong & Shen, Zhuang & Yang, Xiaomei, 2022. "Performance enhancement of equilibrium regeneration in a gasoline particulate filter based on field synergy theory," Energy, Elsevier, vol. 244(PA).
    7. Zuo, Qingsong & Li, Qiming & Yang, Xiaomei & Chen, Wei & Zhu, Guohui & Shen, Zhuang & Xie, Yong & Tang, Yuanyou, 2023. "Investigation of electrically heating catalytic converter flow and temperature field performance improvement based on field synergy," Energy, Elsevier, vol. 274(C).
    8. Agarwal, Avinash Kumar & Mustafi, Nirendra Nath, 2021. "Real-world automotive emissions: Monitoring methodologies, and control measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    9. Zhao, Xiaohuan & Zuo, Hongyan & Jia, Guohai, 2022. "Effect analysis on pressure sensitivity performance of diesel particulate filter for heavy-duty truck diesel engine by the nonlinear soot regeneration combustion pressure model," Energy, Elsevier, vol. 257(C).
    10. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
    11. Macián, V. & Serrano, J.R. & Piqueras, P. & Sanchis, E.J., 2019. "Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters," Energy, Elsevier, vol. 179(C), pages 407-421.
    12. Wen, Yifan & Zhang, Shaojun & Zhang, Jingran & Bao, Shuanghui & Wu, Xiaomeng & Yang, Daoyuan & Wu, Ye, 2020. "Mapping dynamic road emissions for a megacity by using open-access traffic congestion index data," Applied Energy, Elsevier, vol. 260(C).
    13. Yang, Huayu & Zhang, Yuhao & Gao, Wenhua & Yan, Bowen & Zhao, Jianxin & Zhang, Hao & Chen, Wei & Fan, Daming, 2021. "Steam replacement strategy using microwave resonance: A future system for continuous-flow heating applications," Applied Energy, Elsevier, vol. 283(C).
    14. Yu, Wenbin & Zhao, Feiyang & Yang, Wenming, 2020. "Qualitative analysis of particulate matter emission from diesel engine fueled with Jet A-1 under multivariate combustion boundaries by principal component analysis," Applied Energy, Elsevier, vol. 269(C).
    15. Gong, Changming & Yi, Lin & Zhang, Zilei & Sun, Jingzhen & Liu, Fenghua, 2020. "Assessment of ultra-lean burn characteristics for a stratified-charge direct-injection spark-ignition methanol engine under different high compression ratios," Applied Energy, Elsevier, vol. 261(C).
    16. Zhong, Chao & Tan, Jiqiu & Zuo, Hongyan & Wu, Xin & Wang, Shaoli & Liu, Junan, 2021. "Synergy effects analysis on CDPF regeneration performance enhancement and NOx concentration reduction of NH3–SCR over Cu–ZSM–5," Energy, Elsevier, vol. 230(C).
    17. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    18. Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
    19. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:263:y:2020:i:c:s0306261920301434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.