Multi-objective demand side scheduling considering the operational safety of appliances
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.07.016
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Di Giorgio, Alessandro & Liberati, Francesco, 2014. "Near real time load shifting control for residential electricity prosumers under designed and market indexed pricing models," Applied Energy, Elsevier, vol. 128(C), pages 119-132.
- Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.
- Kwon, Pil Seok & Østergaard, Poul, 2014. "Assessment and evaluation of flexible demand in a Danish future energy scenario," Applied Energy, Elsevier, vol. 134(C), pages 309-320.
- Behboodi, Sahand & Chassin, David P. & Crawford, Curran & Djilali, Ned, 2016. "Renewable resources portfolio optimization in the presence of demand response," Applied Energy, Elsevier, vol. 162(C), pages 139-148.
- Kobus, Charlotte B.A. & Klaassen, Elke A.M. & Mugge, Ruth & Schoormans, Jan P.L., 2015. "A real-life assessment on the effect of smart appliances for shifting households’ electricity demand," Applied Energy, Elsevier, vol. 147(C), pages 335-343.
- Kwag, Hyung-Geun & Kim, Jin-O, 2014. "Reliability modeling of demand response considering uncertainty of customer behavior," Applied Energy, Elsevier, vol. 122(C), pages 24-33.
- Ahn, Byeong Seok, 2011. "Compatible weighting method with rank order centroid: Maximum entropy ordered weighted averaging approach," European Journal of Operational Research, Elsevier, vol. 212(3), pages 552-559, August.
- Siano, Pierluigi & Sarno, Debora, 2016. "Assessing the benefits of residential demand response in a real time distribution energy market," Applied Energy, Elsevier, vol. 161(C), pages 533-551.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Omaji Samuel & Sakeena Javaid & Nadeem Javaid & Syed Hassan Ahmed & Muhammad Khalil Afzal & Farruh Ishmanov, 2018. "An Efficient Power Scheduling in Smart Homes Using Jaya Based Optimization with Time-of-Use and Critical Peak Pricing Schemes," Energies, MDPI, vol. 11(11), pages 1-27, November.
- Su, Huai & Zhang, Jinjun & Zio, Enrico & Yang, Nan & Li, Xueyi & Zhang, Zongjie, 2018. "An integrated systemic method for supply reliability assessment of natural gas pipeline networks," Applied Energy, Elsevier, vol. 209(C), pages 489-501.
- Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi, 2018. "A systematic framework of vulnerability analysis of a natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 79-91.
- de Souza Dutra, Michael David & da Conceição Júnior, Gerson & de Paula Ferreira, William & Campos Chaves, Matheus Roberto, 2020. "A customized transition towards smart homes: A fast framework for economic analyses," Applied Energy, Elsevier, vol. 262(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Rieger, Alexander & Thummert, Robert & Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang, 2016. "Estimating the benefits of cooperation in a residential microgrid: A data-driven approach," Applied Energy, Elsevier, vol. 180(C), pages 130-141.
- Sadeghianpourhamami, N. & Demeester, T. & Benoit, D.F. & Strobbe, M. & Develder, C., 2016. "Modeling and analysis of residential flexibility: Timing of white good usage," Applied Energy, Elsevier, vol. 179(C), pages 790-805.
- Li, Pei-Hao & Pye, Steve, 2018. "Assessing the benefits of demand-side flexibility in residential and transport sectors from an integrated energy systems perspective," Applied Energy, Elsevier, vol. 228(C), pages 965-979.
- Hu, Ming-Che & Lu, Su-Ying & Chen, Yen-Haw, 2016. "Stochastic–multiobjective market equilibrium analysis of a demand response program in energy market under uncertainty," Applied Energy, Elsevier, vol. 182(C), pages 500-506.
- Pedro Faria & João Spínola & Zita Vale, 2018. "Distributed Energy Resources Scheduling and Aggregation in the Context of Demand Response Programs," Energies, MDPI, vol. 11(8), pages 1-17, July.
- Yu, Mengmeng & Hong, Seung Ho, 2017. "Incentive-based demand response considering hierarchical electricity market: A Stackelberg game approach," Applied Energy, Elsevier, vol. 203(C), pages 267-279.
- Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
- Wang, Fei & Xu, Hanchen & Xu, Ti & Li, Kangping & Shafie-khah, Miadreza & Catalão, João. P.S., 2017. "The values of market-based demand response on improving power system reliability under extreme circumstances," Applied Energy, Elsevier, vol. 193(C), pages 220-231.
- Jun Dong & Rong Li & Hui Huang, 2018. "Performance Evaluation of Residential Demand Response Based on a Modified Fuzzy VIKOR and Scalable Computing Method," Energies, MDPI, vol. 11(5), pages 1-27, April.
- Alibabaei, Nima & Fung, Alan S. & Raahemifar, Kaamran & Moghimi, Arash, 2017. "Effects of intelligent strategy planning models on residential HVAC system energy demand and cost during the heating and cooling seasons," Applied Energy, Elsevier, vol. 185(P1), pages 29-43.
- Jack, M.W. & Suomalainen, K. & Dew, J.J.W. & Eyers, D., 2018. "A minimal simulation of the electricity demand of a domestic hot water cylinder for smart control," Applied Energy, Elsevier, vol. 211(C), pages 104-112.
- Wang, Jianxiao & Zhong, Haiwang & Lai, Xiaowen & Xia, Qing & Shu, Chang & Kang, Chongqing, 2017. "Distributed real-time demand response based on Lagrangian multiplier optimal selection approach," Applied Energy, Elsevier, vol. 190(C), pages 949-959.
- Ding, Yi & Cui, Wenqi & Zhang, Shujun & Hui, Hongxun & Qiu, Yiwei & Song, Yonghua, 2019. "Multi-state operating reserve model of aggregate thermostatically-controlled-loads for power system short-term reliability evaluation," Applied Energy, Elsevier, vol. 241(C), pages 46-58.
- Neves, Diana & Pina, André & Silva, Carlos A., 2015. "Demand response modeling: A comparison between tools," Applied Energy, Elsevier, vol. 146(C), pages 288-297.
- Kohlhepp, Peter & Harb, Hassan & Wolisz, Henryk & Waczowicz, Simon & Müller, Dirk & Hagenmeyer, Veit, 2019. "Large-scale grid integration of residential thermal energy storages as demand-side flexibility resource: A review of international field studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 527-547.
- Kobus, Charlotte B.A. & Klaassen, Elke A.M. & Mugge, Ruth & Schoormans, Jan P.L., 2015. "A real-life assessment on the effect of smart appliances for shifting households’ electricity demand," Applied Energy, Elsevier, vol. 147(C), pages 335-343.
- Behboodi, Sahand & Chassin, David P. & Djilali, Ned & Crawford, Curran, 2017. "Interconnection-wide hour-ahead scheduling in the presence of intermittent renewables and demand response: A surplus maximizing approach," Applied Energy, Elsevier, vol. 189(C), pages 336-351.
- Wang, Jianxiao & Zhong, Haiwang & Ma, Ziming & Xia, Qing & Kang, Chongqing, 2017. "Review and prospect of integrated demand response in the multi-energy system," Applied Energy, Elsevier, vol. 202(C), pages 772-782.
- Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
More about this item
Keywords
Operational safety of appliances; Multiple objectives; Pareto-optimal front; Demand side scheduling; Energy usage optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:179:y:2016:i:c:p:864-874. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.