IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v251y2019ic94.html
   My bibliography  Save this article

A split pH direct liquid fuel cell powered by propanol or glycerol

Author

Listed:
  • Chino, Isabel
  • Hendrix, Kimberly
  • Keramati, Abtin
  • Muneeb, Omar
  • Haan, John L.

Abstract

A split pH fuel cell was constructed using an alkaline fuel stream containing NaOH and an alcohol fuel (glycerol, 1-propanol, or 2-propanol) with an acidic oxidant stream containing H2SO4 and 3% H2O2; the electrodes were Pd black anode and Pt black or carbon black cathode separated by a cation exchange membrane with Na+ substituted for H+. The split pH environment improves the thermodynamics of the fuel cell by creating a large potential difference between electrodes, and it provides improved kinetics by lowering the pH of the anode to optimum conditions for alcohol oxidation. When the fuel cell was constructed with a carbon black cathode, significant performance was observed, with maximum power density as high as 115 mW cm−2 for 1-propanol, 105 for glycerol, and 101 for 2-propanol. When the cathode was constructed with Pt black, the power densities increased as high as 275 mW cm−2 for glycerol, 241 for 1-propanol, and 228 for 2-propanol. This performance with Pt is the highest to our knowledge for these fuels in the open literature.

Suggested Citation

  • Chino, Isabel & Hendrix, Kimberly & Keramati, Abtin & Muneeb, Omar & Haan, John L., 2019. "A split pH direct liquid fuel cell powered by propanol or glycerol," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:251:y:2019:i:c:94
    DOI: 10.1016/j.apenergy.2019.113323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919309973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benipal, Neeva & Qi, Ji & Gentile, Jacob C. & Li, Wenzhen, 2017. "Direct glycerol fuel cell with polytetrafluoroethylene (PTFE) thin film separator," Renewable Energy, Elsevier, vol. 105(C), pages 647-655.
    2. Muneeb, Omar & Do, Emily & Boyd, Desiree & Perez, Josh & Haan, John L., 2019. "PdCu/C anode catalysts for the alkaline ascorbate fuel cell," Applied Energy, Elsevier, vol. 235(C), pages 473-479.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chino, Isabel & Vega, Lorenzo & Keramati, Abtin & Hendrix, Kimberly & Haan, John L., 2020. "A direct liquid fuel cell powered by 1,3- or 1,2-propanediol," Applied Energy, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ingabire, Providence Buregeya & Pan, Xueting & Haragirimana, Alphonse & Li, Na & Hu, Zhaoxia & Chen, Shouwen, 2020. "Improved hydroxide conductivity and performance of nanocomposite membrane derived on quaternized polymers incorporated by titanium dioxide modified graphitic carbon nitride for fuel cells," Renewable Energy, Elsevier, vol. 152(C), pages 590-600.
    2. Herranz, D. & Escudero-Cid, R. & Montiel, M. & Palacio, C. & Fatás, E. & Ocón, P., 2018. "Poly (vinyl alcohol) and poly (benzimidazole) blend membranes for high performance alkaline direct ethanol fuel cells," Renewable Energy, Elsevier, vol. 127(C), pages 883-895.
    3. Osmieri, Luigi & Escudero-Cid, Ricardo & Monteverde Videla, Alessandro H.A. & Ocón, Pilar & Specchia, Stefania, 2018. "Application of a non-noble Fe-N-C catalyst for oxygen reduction reaction in an alkaline direct ethanol fuel cell," Renewable Energy, Elsevier, vol. 115(C), pages 226-237.
    4. Abdelkareem, Mohammad Ali & Allagui, Anis & Sayed, Enas Taha & El Haj Assad, M. & Said, Zafar & Elsaid, Khaled, 2019. "Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells," Renewable Energy, Elsevier, vol. 131(C), pages 563-584.
    5. Chino, Isabel & Vega, Lorenzo & Keramati, Abtin & Hendrix, Kimberly & Haan, John L., 2020. "A direct liquid fuel cell powered by 1,3- or 1,2-propanediol," Applied Energy, Elsevier, vol. 262(C).
    6. Do-Hyeong Kim & Moon-Sung Kang, 2020. "Pore-Filled Anion-Exchange Membranes with Double Cross-Linking Structure for Fuel Cells and Redox Flow Batteries," Energies, MDPI, vol. 13(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:251:y:2019:i:c:94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.