IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v238y2019icp534-546.html
   My bibliography  Save this article

Experimental study on heating characteristics and parameter optimization of transpired solar collectors

Author

Listed:
  • Wang, Dengjia
  • Gao, Qian
  • Liu, Yanfeng
  • Wang, Yingying
  • Chen, Yaowen
  • Liu, Yuan
  • Liu, Jiaping

Abstract

It is necessary to improve indoor air quality while meeting the indoor thermal demand of buildings during winter. The transpired solar collector (TSC) is a solar energy integration technology in buildings, which usually consists of a heat collecting plate with infiltration holes, an air layer, an insulation wall, air outlet and other appurtenances. It not only provides preheated fresh air for the indoor environment, but also reduces the cold wind infiltration heat load in winter. In this paper, the heat transfer process of each component of the transpired solar collectors was analyzed comprehensively. Findings on, the heat collection efficiency, heat exchange efficiency indexes and optimized parameters of the transpired solar collectors are presented. Moreover, an integrated and detailed performance test platform for the transpired solar collectors heating characteristics and optimization parameters was developed. Additionally, a comprehensive and multi-condition experimental study was carried out. One important finding is that the non-uniform distribution of infiltration holes at the top and bottom of the transpired solar collectors significantly influence on the preheating effect of fresh air and the overall efficiency of the system. Moreover, an increase in the uniformity of the infiltration holes, increase the heat collection efficiency and heat exchange efficiency by 25% and 10% respectively. Furthermore, the heat collection gain per unit of heat collecting plate area increased by about 34.7 W, and the outlet temperature could be improved by about 15 °C. These findings provide a critical design reference for the high-performance application of the transpired solar collectors in buildings.

Suggested Citation

  • Wang, Dengjia & Gao, Qian & Liu, Yanfeng & Wang, Yingying & Chen, Yaowen & Liu, Yuan & Liu, Jiaping, 2019. "Experimental study on heating characteristics and parameter optimization of transpired solar collectors," Applied Energy, Elsevier, vol. 238(C), pages 534-546.
  • Handle: RePEc:eee:appene:v:238:y:2019:i:c:p:534-546
    DOI: 10.1016/j.apenergy.2019.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919300042
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Wandong & Li, Bojia & Zhang, Huan & You, Shijun & Li, Ying & Ye, Tianzhen, 2016. "Thermal characteristics of a glazed transpired solar collector with perforating corrugated plate in cold regions," Energy, Elsevier, vol. 109(C), pages 781-790.
    2. El-Sebaii, A.A. & Aboul-Enein, S. & Ramadan, M.R.I. & Shalaby, S.M. & Moharram, B.M., 2011. "Thermal performance investigation of double pass-finned plate solar air heater," Applied Energy, Elsevier, vol. 88(5), pages 1727-1739, May.
    3. Nie, Hongguang & Kemp, René, 2014. "Index decomposition analysis of residential energy consumption in China: 2002–2010," Applied Energy, Elsevier, vol. 121(C), pages 10-19.
    4. Chen, Chao & Ling, Haoshu & Zhai, Zhiqiang (John) & Li, Yin & Yang, Fengguang & Han, Fengtao & Wei, Shen, 2018. "Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses," Applied Energy, Elsevier, vol. 216(C), pages 602-612.
    5. Huebner, Gesche M. & Hamilton, Ian & Chalabi, Zaid & Shipworth, David & Oreszczyn, Tadj, 2015. "Explaining domestic energy consumption – The comparative contribution of building factors, socio-demographics, behaviours and attitudes," Applied Energy, Elsevier, vol. 159(C), pages 589-600.
    6. El-Sebaii, A.A. & Aboul-Enein, S. & Ramadan, M.R.I. & Shalaby, S.M. & Moharram, B.M., 2011. "Investigation of thermal performance of-double pass-flat and v-corrugated plate solar air heaters," Energy, Elsevier, vol. 36(2), pages 1076-1086.
    7. Shukla, Ashish & Nkwetta, Dan Nchelatebe & Cho, Y.J. & Stevenson, Vicki & Jones, Phil, 2012. "A state of art review on the performance of transpired solar collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3975-3985.
    8. Li, Bojia & You, Shijun & Ye, Tianzhen & Zhang, Huan & Li, Xianli & Li, Chao, 2014. "Mathematical modeling and experimental verification of vacuum glazed transpired solar collector with slit-like perforations," Renewable Energy, Elsevier, vol. 69(C), pages 43-49.
    9. Buker, Mahmut Sami & Riffat, Saffa B., 2015. "Building integrated solar thermal collectors – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 327-346.
    10. Ambrosone, G. & Catalanotti, S. & Vicari, L., 1983. "Dynamic thermal behaviour of a wall," Applied Energy, Elsevier, vol. 15(2), pages 153-165.
    11. Harris, D.J. & Helwig, N., 2007. "Solar chimney and building ventilation," Applied Energy, Elsevier, vol. 84(2), pages 135-146, February.
    12. van Wieringen, J.S., 1980. "Prospects for solar energy for providing low temperature heat," Applied Energy, Elsevier, vol. 7(1-3), pages 67-81, November.
    13. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Tao & Zhao, Jiangdong & Zhou, Jiri & Lei, Bo, 2020. "Experimental investigation of thermal performance of a heating system combining solar air collector with hollow ventilated interior wall," Renewable Energy, Elsevier, vol. 147(P1), pages 1825-1835.
    2. Xiaoling Cui & Xiaoyun Du & Yanzhou Cao & Guochen Sang & Yangkai Zhang & Lei Zhang & Yiyun Zhu, 2020. "Thermophysical Properties Characterization of Sulphoaluminate Cement Mortars Incorporating Phase Change Material for Thermal Energy Storage," Energies, MDPI, vol. 13(19), pages 1-17, September.
    3. Juan Zhao & Yifei Bai & Botao Zhou & Junmei Gao & Tianwei Qiang & Suqian Yan & Pei Liang, 2022. "Performance Analysis and Optimization of SHS Based on Solar Resources Distribution in Typical Cities in Cold Regions of China," Energies, MDPI, vol. 15(20), pages 1-13, October.
    4. Hassan, Hamdy & Abo-Elfadl, Saleh & El-Dosoky, M.F., 2020. "An experimental investigation of the performance of new design of solar air heater (tubular)," Renewable Energy, Elsevier, vol. 151(C), pages 1055-1066.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    2. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    3. M. M. Hasan & Shakhawat Hossain & M. Mofijur & Zobaidul Kabir & Irfan Anjum Badruddin & T. M. Yunus Khan & Esam Jassim, 2023. "Harnessing Solar Power: A Review of Photovoltaic Innovations, Solar Thermal Systems, and the Dawn of Energy Storage Solutions," Energies, MDPI, vol. 16(18), pages 1-30, September.
    4. Zheng, Wandong & Li, Bojia & Zhang, Huan & You, Shijun & Li, Ying & Ye, Tianzhen, 2016. "Thermal characteristics of a glazed transpired solar collector with perforating corrugated plate in cold regions," Energy, Elsevier, vol. 109(C), pages 781-790.
    5. Juanicó, Luis E. & Di Lalla, Nicolás & González, Alejandro D., 2017. "Full thermal-hydraulic and solar modeling to study low-cost solar collectors based on a single long LDPE hose," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 187-195.
    6. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    7. Hu, Jianjun & Guo, Meng & Guo, Jinyong & Zhang, Guangqiu & Zhang, Yuwen, 2020. "Numerical and experimental investigation of solar air collector with internal swirling flow," Renewable Energy, Elsevier, vol. 162(C), pages 2259-2271.
    8. Yang, Tingting & Athienitis, Andreas K., 2015. "Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system," Applied Energy, Elsevier, vol. 159(C), pages 70-79.
    9. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    10. Singh, Satyender & Dhiman, Prashant, 2016. "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1010-1031.
    11. Badescu, Viorel & Abed, Qahtan A. & Ciocanea, Adrian & Soriga, Iuliana, 2017. "The stability of the radiative regime does influence the daily performance of solar air heaters," Renewable Energy, Elsevier, vol. 107(C), pages 403-416.
    12. Kumar, Amit & Akshayveer, & Singh, Ajeet Pratap & Singh, O.P., 2020. "Efficient designs of double-pass curved solar air heaters," Renewable Energy, Elsevier, vol. 160(C), pages 1105-1118.
    13. Hassan, Hamdy & Abo-Elfadl, Saleh, 2018. "Experimental study on the performance of double pass and two inlet ports solar air heater (SAH) at different configurations of the absorber plate," Renewable Energy, Elsevier, vol. 116(PA), pages 728-740.
    14. Khouya, Ahmed, 2020. "Effect of regeneration heat and energy storage on thermal drying performance in a hardwood solar kiln," Renewable Energy, Elsevier, vol. 155(C), pages 783-799.
    15. Zheng, Wandong & Zhang, Huan & You, Shijun & Fu, Yindan & Zheng, Xuejing, 2017. "Thermal performance analysis of a metal corrugated packing solar air collector in cold regions," Applied Energy, Elsevier, vol. 203(C), pages 938-947.
    16. Wandong Zheng & Huan Zhang & Shijun You & Yindan Fu, 2017. "Experimental Investigation of the Transpired Solar Air Collectors and Metal Corrugated Packing Solar Air Collectors," Energies, MDPI, vol. 10(3), pages 1-12, March.
    17. Gao, Meng & Fan, Jianhua & Furbo, Simon & Xiang, Yutong, 2022. "Energy and exergy analysis of a glazed solar preheating collector wall with non-uniform perforated corrugated plate," Renewable Energy, Elsevier, vol. 196(C), pages 1048-1063.
    18. Singh, Satyender & Chaurasiya, Shailendra Kumar & Negi, Bharat Singh & Chander, Subhash & Nemś, Magdalena & Negi, Sushant, 2020. "Utilizing circular jet impingement to enhance thermal performance of solar air heater," Renewable Energy, Elsevier, vol. 154(C), pages 1327-1345.
    19. Shaban R. S. Aldhshan & Khairul Nizam Abdul Maulud & Wan Shafrina Wan Mohd Jaafar & Othman A. Karim & Biswajeet Pradhan, 2021. "Energy Consumption and Spatial Assessment of Renewable Energy Penetration and Building Energy Efficiency in Malaysia: A Review," Sustainability, MDPI, vol. 13(16), pages 1-26, August.
    20. Buker, Mahmut Sami & Riffat, Saffa B., 2015. "Building integrated solar thermal collectors – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 327-346.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:238:y:2019:i:c:p:534-546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.