IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v215y2018icp717-735.html
   My bibliography  Save this article

Impacts of building geometry modeling methods on the simulation results of urban building energy models

Author

Listed:
  • Chen, Yixing
  • Hong, Tianzhen

Abstract

Urban-scale building energy modeling (UBEM)—using building modeling to understand how a group of buildings will perform together—is attracting increasing attention in the energy modeling field. Unlike modeling a single building, which will use detailed information, UBEM generally uses existing building stock data consisting of high-level building information. This study evaluated the impacts of three zoning methods and the use of floor multipliers on the simulated energy use of 940 office and retail buildings in three climate zones using City Building Energy Saver. The first zoning method, OneZone, creates one thermal zone per floor using the target building’s footprint. The second zoning method, AutoZone, splits the building’s footprint into perimeter and core zones. A novel, pixel-based automatic zoning algorithm is developed for the AutoZone method. The third zoning method, Prototype, uses the U.S. Department of Energy’s reference building prototype shapes. Results show that simulated source energy use of buildings with the floor multiplier are marginally higher by up to 2.6% than those modeling each floor explicitly, which take two to three times longer to run. Compared with the AutoZone method, the OneZone method results in decreased thermal loads and less equipment capacities: 15.2% smaller fan capacity, 11.1% smaller cooling capacity, 11.0% smaller heating capacity, 16.9% less heating loads, and 7.5% less cooling loads. Source energy use differences range from -7.6% to 5.1%. When comparing the Prototype method with the AutoZone method, source energy use differences range from -12.1% to 19.0%, and larger ranges of differences are found for the thermal loads and equipment capacities. This study demonstrated that zoning methods have a significant impact on the simulated energy use of UBEM. One recommendation resulting from this study is to use the AutoZone method with floor multiplier to obtain accurate results while balancing the simulation run time for UBEM.

Suggested Citation

  • Chen, Yixing & Hong, Tianzhen, 2018. "Impacts of building geometry modeling methods on the simulation results of urban building energy models," Applied Energy, Elsevier, vol. 215(C), pages 717-735.
  • Handle: RePEc:eee:appene:v:215:y:2018:i:c:p:717-735
    DOI: 10.1016/j.apenergy.2018.02.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918301983
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaudhary, Gaurav & New, Joshua & Sanyal, Jibonananda & Im, Piljae & O’Neill, Zheng & Garg, Vishal, 2016. "Evaluation of “Autotune” calibration against manual calibration of building energy models," Applied Energy, Elsevier, vol. 182(C), pages 115-134.
    2. Lee, Sang Hoon & Hong, Tianzhen & Piette, Mary Ann & Sawaya, Geof & Chen, Yixing & Taylor-Lange, Sarah C., 2015. "Accelerating the energy retrofit of commercial buildings using a database of energy efficiency performance," Energy, Elsevier, vol. 90(P1), pages 738-747.
    3. Hong, Tianzhen & Piette, Mary Ann & Chen, Yixing & Lee, Sang Hoon & Taylor-Lange, Sarah C. & Zhang, Rongpeng & Sun, Kaiyu & Price, Phillip, 2015. "Commercial Building Energy Saver: An energy retrofit analysis toolkit," Applied Energy, Elsevier, vol. 159(C), pages 298-309.
    4. Kazas, Georgios & Fabrizio, Enrico & Perino, Marco, 2017. "Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study," Applied Energy, Elsevier, vol. 193(C), pages 243-262.
    5. Chen, Yixing & Hong, Tianzhen & Piette, Mary Ann, 2017. "Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis," Applied Energy, Elsevier, vol. 205(C), pages 323-335.
    6. Unternährer, Jérémy & Moret, Stefano & Joost, Stéphane & Maréchal, François, 2017. "Spatial clustering for district heating integration in urban energy systems: Application to geothermal energy," Applied Energy, Elsevier, vol. 190(C), pages 749-763.
    7. Yang, Tao & Pan, Yiqun & Mao, Jiachen & Wang, Yonglong & Huang, Zhizhong, 2016. "An automated optimization method for calibrating building energy simulation models with measured data: Orientation and a case study," Applied Energy, Elsevier, vol. 179(C), pages 1220-1231.
    8. Ramos Ruiz, Germán & Fernández Bandera, Carlos & Gómez-Acebo Temes, Tomás & Sánchez-Ostiz Gutierrez, Ana, 2016. "Genetic algorithm for building envelope calibration," Applied Energy, Elsevier, vol. 168(C), pages 691-705.
    9. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    10. Han, Yilong & Taylor, John E. & Pisello, Anna Laura, 2017. "Exploring mutual shading and mutual reflection inter-building effects on building energy performance," Applied Energy, Elsevier, vol. 185(P2), pages 1556-1564.
    11. Luo, Xuan & Hong, Tianzhen & Chen, Yixing & Piette, Mary Ann, 2017. "Electric load shape benchmarking for small- and medium-sized commercial buildings," Applied Energy, Elsevier, vol. 204(C), pages 715-725.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enríquez, R. & Jiménez, M.J. & Heras, M.R., 2017. "Towards non-intrusive thermal load Monitoring of buildings: BES calibration," Applied Energy, Elsevier, vol. 191(C), pages 44-54.
    2. Chen, Yixing & Hong, Tianzhen & Piette, Mary Ann, 2017. "Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis," Applied Energy, Elsevier, vol. 205(C), pages 323-335.
    3. Hou, Jin & Xu, Peng & Lu, Xing & Pang, Zhihong & Chu, Yiyi & Huang, Gongsheng, 2018. "Implementation of expansion planning in existing district energy system: A case study in China," Applied Energy, Elsevier, vol. 211(C), pages 269-281.
    4. Bianchi, Carlo & Zhang, Liang & Goldwasser, David & Parker, Andrew & Horsey, Henry, 2020. "Modeling occupancy-driven building loads for large and diversified building stocks through the use of parametric schedules," Applied Energy, Elsevier, vol. 276(C).
    5. Carlos Fernández Bandera & Germán Ramos Ruiz, 2017. "Towards a New Generation of Building Envelope Calibration," Energies, MDPI, vol. 10(12), pages 1-19, December.
    6. Santos, Luis Guilherme Resende & Afshari, Afshin & Norford, Leslie K. & Mao, Jiachen, 2018. "Evaluating approaches for district-wide energy model calibration considering the Urban Heat Island effect," Applied Energy, Elsevier, vol. 215(C), pages 31-40.
    7. Wu, Wenbo & Dong, Bing & Wang, Qi (Ryan) & Kong, Meng & Yan, Da & An, Jingjing & Liu, Yapan, 2020. "A novel mobility-based approach to derive urban-scale building occupant profiles and analyze impacts on building energy consumption," Applied Energy, Elsevier, vol. 278(C).
    8. Shen, Pengyuan & Braham, William & Yi, Yunkyu, 2019. "The feasibility and importance of considering climate change impacts in building retrofit analysis," Applied Energy, Elsevier, vol. 233, pages 254-270.
    9. Edwards, Richard E. & New, Joshua & Parker, Lynne E. & Cui, Borui & Dong, Jin, 2017. "Constructing large scale surrogate models from big data and artificial intelligence," Applied Energy, Elsevier, vol. 202(C), pages 685-699.
    10. Chen, Yixing & Deng, Zhang & Hong, Tianzhen, 2020. "Automatic and rapid calibration of urban building energy models by learning from energy performance database," Applied Energy, Elsevier, vol. 277(C).
    11. Rachael Sherman & Hariharan Naganathan & Kristen Parrish, 2021. "Energy Savings Results from Small Commercial Building Retrofits in the US," Energies, MDPI, vol. 14(19), pages 1-16, September.
    12. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.
    13. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    14. Glasgo, Brock & Hendrickson, Chris & Azevedo, Inês Lima, 2017. "Assessing the value of information in residential building simulation: Comparing simulated and actual building loads at the circuit level," Applied Energy, Elsevier, vol. 203(C), pages 348-363.
    15. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Cho, Kyuman, 2019. "Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 118-131.
    16. Pedro Paulo Fernandes da Silva & Alberto Hernandez Neto & Ildo Luis Sauer, 2021. "Evaluation of Model Calibration Method for Simulation Performance of a Public Hospital in Brazil," Energies, MDPI, vol. 14(13), pages 1-20, June.
    17. Nagpal, Shreshth & Hanson, Jared & Reinhart, Christoph, 2019. "A framework for using calibrated campus-wide building energy models for continuous planning and greenhouse gas emissions reduction tracking," Applied Energy, Elsevier, vol. 241(C), pages 82-97.
    18. Walsh, Angélica & Cóstola, Daniel & Labaki, Lucila Chebel, 2018. "Performance-based validation of climatic zoning for building energy efficiency applications," Applied Energy, Elsevier, vol. 212(C), pages 416-427.
    19. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    20. Hou, Jing & Liu, Yisheng & Wu, Yong & Zhou, Nan & Feng, Wei, 2016. "Comparative study of commercial building energy-efficiency retrofit policies in four pilot cities in China," Energy Policy, Elsevier, vol. 88(C), pages 204-215.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:215:y:2018:i:c:p:717-735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.