Influences of energy data on Bayesian calibration of building energy model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2018.09.156
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chaudhary, Gaurav & New, Joshua & Sanyal, Jibonananda & Im, Piljae & O’Neill, Zheng & Garg, Vishal, 2016. "Evaluation of “Autotune” calibration against manual calibration of building energy models," Applied Energy, Elsevier, vol. 182(C), pages 115-134.
- Manfren, Massimiliano & Aste, Niccolò & Moshksar, Reza, 2013. "Calibration and uncertainty analysis for computer models – A meta-model based approach for integrated building energy simulation," Applied Energy, Elsevier, vol. 103(C), pages 627-641.
- Choi, Wonjun & Menberg, Kathrin & Kikumoto, Hideki & Heo, Yeonsook & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference of structural error in inverse models of thermal response tests," Applied Energy, Elsevier, vol. 228(C), pages 1473-1485.
- Yoon, Sungmin & Yu, Yuebin, 2018. "Hidden factors and handling strategies on virtual in-situ sensor calibration in building energy systems: Prior information and cancellation effect," Applied Energy, Elsevier, vol. 212(C), pages 1069-1082.
- Tian, Wei, 2013. "A review of sensitivity analysis methods in building energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 411-419.
- Carstens, Herman & Xia, Xiaohua & Yadavalli, Sarma, 2017. "Low-cost energy meter calibration method for measurement and verification," Applied Energy, Elsevier, vol. 188(C), pages 563-575.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hedegaard, Rasmus Elbæk & Kristensen, Martin Heine & Pedersen, Theis Heidmann & Brun, Adam & Petersen, Steffen, 2019. "Bottom-up modelling methodology for urban-scale analysis of residential space heating demand response," Applied Energy, Elsevier, vol. 242(C), pages 181-204.
- Zhu, Chuanqi & Tian, Wei & Yin, Baoquan & Li, Zhanyong & Shi, Jiaxin, 2020. "Uncertainty calibration of building energy models by combining approximate Bayesian computation and machine learning algorithms," Applied Energy, Elsevier, vol. 268(C).
- Gatt, Damien & Yousif, Charles & Cellura, Maurizio & Camilleri, Liberato & Guarino, Francesco, 2020. "Assessment of building energy modelling studies to meet the requirements of the new Energy Performance of Buildings Directive," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
- Rasa Džiugaitė-Tumėnienė & Rūta Mikučionienė & Giedrė Streckienė & Juozas Bielskus, 2021. "Development and Analysis of a Dynamic Energy Model of an Office Using a Building Management System (BMS) and Actual Measurement Data," Energies, MDPI, vol. 14(19), pages 1-24, October.
- Gholami, M. & Torreggiani, D. & Tassinari, P. & Barbaresi, A., 2021. "Narrowing uncertainties in forecasting urban building energy demand through an optimal archetyping method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Calama-González, Carmen María & Symonds, Phil & Petrou, Giorgos & Suárez, Rafael & León-Rodríguez, Ángel Luis, 2021. "Bayesian calibration of building energy models for uncertainty analysis through test cells monitoring," Applied Energy, Elsevier, vol. 282(PA).
- Chen, Jianli & Gao, Xinghua & Hu, Yuqing & Zeng, Zhaoyun & Liu, Yanan, 2019. "A meta-model-based optimization approach for fast and reliable calibration of building energy models," Energy, Elsevier, vol. 188(C).
- Prataviera, Enrico & Vivian, Jacopo & Lombardo, Giulia & Zarrella, Angelo, 2022. "Evaluation of the impact of input uncertainty on urban building energy simulations using uncertainty and sensitivity analysis," Applied Energy, Elsevier, vol. 311(C).
- Hou, D. & Hassan, I.G. & Wang, L., 2021. "Review on building energy model calibration by Bayesian inference," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Calama-González, Carmen María & Symonds, Phil & Petrou, Giorgos & Suárez, Rafael & León-Rodríguez, Ángel Luis, 2021. "Bayesian calibration of building energy models for uncertainty analysis through test cells monitoring," Applied Energy, Elsevier, vol. 282(PA).
- Chen, Jianli & Gao, Xinghua & Hu, Yuqing & Zeng, Zhaoyun & Liu, Yanan, 2019. "A meta-model-based optimization approach for fast and reliable calibration of building energy models," Energy, Elsevier, vol. 188(C).
- Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.
- Carlos Fernández Bandera & Germán Ramos Ruiz, 2017. "Towards a New Generation of Building Envelope Calibration," Energies, MDPI, vol. 10(12), pages 1-19, December.
- Muhammad Waseem Ahmad & Anthony Mouraud & Yacine Rezgui & Monjur Mourshed, 2018. "Deep Highway Networks and Tree-Based Ensemble for Predicting Short-Term Building Energy Consumption," Energies, MDPI, vol. 11(12), pages 1-21, December.
- Ramos Ruiz, Germán & Fernández Bandera, Carlos & Gómez-Acebo Temes, Tomás & Sánchez-Ostiz Gutierrez, Ana, 2016. "Genetic algorithm for building envelope calibration," Applied Energy, Elsevier, vol. 168(C), pages 691-705.
- Santos, Luis Guilherme Resende & Afshari, Afshin & Norford, Leslie K. & Mao, Jiachen, 2018. "Evaluating approaches for district-wide energy model calibration considering the Urban Heat Island effect," Applied Energy, Elsevier, vol. 215(C), pages 31-40.
- Enríquez, R. & Jiménez, M.J. & Heras, M.R., 2017. "Towards non-intrusive thermal load Monitoring of buildings: BES calibration," Applied Energy, Elsevier, vol. 191(C), pages 44-54.
- Wate, P. & Iglesias, M. & Coors, V. & Robinson, D., 2020. "Framework for emulation and uncertainty quantification of a stochastic building performance simulator," Applied Energy, Elsevier, vol. 258(C).
- Edwards, Richard E. & New, Joshua & Parker, Lynne E. & Cui, Borui & Dong, Jin, 2017. "Constructing large scale surrogate models from big data and artificial intelligence," Applied Energy, Elsevier, vol. 202(C), pages 685-699.
- Yang, Tao & Pan, Yiqun & Mao, Jiachen & Wang, Yonglong & Huang, Zhizhong, 2016. "An automated optimization method for calibrating building energy simulation models with measured data: Orientation and a case study," Applied Energy, Elsevier, vol. 179(C), pages 1220-1231.
- Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.
- Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
- Rackes, Adams & Melo, Ana Paula & Lamberts, Roberto, 2016. "Naturally comfortable and sustainable: Informed design guidance and performance labeling for passive commercial buildings in hot climates," Applied Energy, Elsevier, vol. 174(C), pages 256-274.
- Tian, Wei & Heo, Yeonsook & de Wilde, Pieter & Li, Zhanyong & Yan, Da & Park, Cheol Soo & Feng, Xiaohang & Augenbroe, Godfried, 2018. "A review of uncertainty analysis in building energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 285-301.
- Pang, Zhihong & O'Neill, Zheng, 2018. "Uncertainty quantification and sensitivity analysis of the domestic hot water usage in hotels," Applied Energy, Elsevier, vol. 232(C), pages 424-442.
- Enrico Fabrizio & Valentina Monetti, 2015. "Methodologies and Advancements in the Calibration of Building Energy Models," Energies, MDPI, vol. 8(4), pages 1-27, March.
- Østergård, Torben & Jensen, Rasmus L. & Maagaard, Steffen E., 2016. "Building simulations supporting decision making in early design – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 187-201.
- Carstens, Herman & Xia, Xiaohua & Yadavalli, Sarma, 2018. "Measurement uncertainty in energy monitoring: Present state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2791-2805.
- Saryazdi, Seyed mohammad Ebrahimi & Etemad, Alireza & Shafaat, Ali & Bahman, Ammar M., 2024. "A comprehensive review and sensitivity analysis of the factors affecting the performance of buildings equipped with Variable Refrigerant Flow system in Middle East climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
More about this item
Keywords
Building energy model; Bayesian calibration; Utility data; Informative energy data; Sensitivity analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:231:y:2018:i:c:p:686-698. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.