IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v218y2018icp520-532.html
   My bibliography  Save this article

A decentralized trading algorithm for an electricity market with generation uncertainty

Author

Listed:
  • Bahrami, Shahab
  • Amini, M. Hadi

Abstract

The uncertainties in renewable power generators and the proliferation of price-responsive load aggregators make it a challenge for independent system operators (ISOs) to manage the energy trading in the power markets. Hence, a centralized framework for the energy trading market may not be remained practical for the ISOs mainly due to violating the privacy of different entities, i.e., load aggregators and generators. It can also suffer from the high computational burden in a market with a large number of entities. Instead, in this paper, we focus on proposing a decentralized energy trading framework enabling the ISO to incentivize the entities toward an operating point that jointly optimize the cost of load aggregators and profit of the generators, as well as the risk of shortage in the renewable generation. To address the uncertainties in the renewable resources, we apply a risk measure called the conditional value-at-risk (CVaR) with the goal of limiting the likelihood of high renewable generation shortage with a certain confidence level. Then by considering the risk attitude of the ISO and the generators, we develop a decentralized energy trading algorithm with some control signals that properly coordinate the entities toward the market operating point of the ISO’s centralized approach. Simulation results on the IEEE 30-bus test system show that the proposed decentralized algorithm converges to the solution of the ISO’s centralized problem in a timely fashion. Furthermore, the load aggregators can help their consumers reduce their electricity cost by 18% on average through managing their loads using locally available information. Meanwhile, the generators can benefit from 17.1% increase in their total profit through decreasing their generation cost.

Suggested Citation

  • Bahrami, Shahab & Amini, M. Hadi, 2018. "A decentralized trading algorithm for an electricity market with generation uncertainty," Applied Energy, Elsevier, vol. 218(C), pages 520-532.
  • Handle: RePEc:eee:appene:v:218:y:2018:i:c:p:520-532
    DOI: 10.1016/j.apenergy.2018.02.157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918302915
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qadrdan, Meysam & Cheng, Meng & Wu, Jianzhong & Jenkins, Nick, 2017. "Benefits of demand-side response in combined gas and electricity networks," Applied Energy, Elsevier, vol. 192(C), pages 360-369.
    2. González-Aparicio, I. & Zucker, A., 2015. "Impact of wind power uncertainty forecasting on the market integration of wind energy in Spain," Applied Energy, Elsevier, vol. 159(C), pages 334-349.
    3. Vithayasrichareon, Peerapat & Riesz, Jenny & MacGill, Iain, 2017. "Operational flexibility of future generation portfolios with high renewables," Applied Energy, Elsevier, vol. 206(C), pages 32-41.
    4. Zhou, Yue & Wang, Chengshan & Wu, Jianzhong & Wang, Jidong & Cheng, Meng & Li, Gen, 2017. "Optimal scheduling of aggregated thermostatically controlled loads with renewable generation in the intraday electricity market," Applied Energy, Elsevier, vol. 188(C), pages 456-465.
    5. Drysdale, Brian & Wu, Jianzhong & Jenkins, Nick, 2015. "Flexible demand in the GB domestic electricity sector in 2030," Applied Energy, Elsevier, vol. 139(C), pages 281-290.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xi & Liu, Boxuan & Qiu, Jing & Shen, Wei & Reedman, Luke & Dong, Zhao Yang, 2021. "A new trading mechanism for prosumers based on flexible reliability preferences in active distribution network," Applied Energy, Elsevier, vol. 283(C).
    2. Dong, Zhe & Liu, Miao & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2019. "Automatic generation control for the flexible operation of multimodular high temperature gas-cooled reactor plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 11-31.
    3. Hugo Algarvio & Fernando Lopes & António Couto & Ana Estanqueiro, 2019. "Participation of wind power producers in day‐ahead and balancing markets: An overview and a simulation‐based study," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    4. Sourav Khanna & Victor Becerra & Adib Allahham & Damian Giaouris & Jamie M. Foster & Keiron Roberts & David Hutchinson & Jim Fawcett, 2020. "Demand Response Model Development for Smart Households Using Time of Use Tariffs and Optimal Control—The Isle of Wight Energy Autonomous Community Case Study," Energies, MDPI, vol. 13(3), pages 1-27, January.
    5. Xu, Qingyang & Sun, Feihu & Cai, Qiran & Liu, Li-Jing & Zhang, Kun & Liang, Qiao-Mei, 2022. "Assessment of the influence of demand-side responses on high-proportion renewable energy system: An evidence of Qinghai, China," Renewable Energy, Elsevier, vol. 190(C), pages 945-958.
    6. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    7. Xiaolin Ayón & María Ángeles Moreno & Julio Usaola, 2017. "Aggregators’ Optimal Bidding Strategy in Sequential Day-Ahead and Intraday Electricity Spot Markets," Energies, MDPI, vol. 10(4), pages 1-20, April.
    8. Okur, Özge & Voulis, Nina & Heijnen, Petra & Lukszo, Zofia, 2019. "Aggregator-mediated demand response: Minimizing imbalances caused by uncertainty of solar generation," Applied Energy, Elsevier, vol. 247(C), pages 426-437.
    9. Qu, Kaiping & Shi, Shouyuan & Yu, Tao & Wang, Wenrui, 2019. "A convex decentralized optimization for environmental-economic power and gas system considering diversified emission control," Applied Energy, Elsevier, vol. 240(C), pages 630-645.
    10. Lau, E.T. & Yang, Q. & Stokes, L. & Taylor, G.A. & Forbes, A.B. & Clarkson, P. & Wright, P.S. & Livina, V.N., 2015. "Carbon savings in the UK demand side response programmes," Applied Energy, Elsevier, vol. 159(C), pages 478-489.
    11. Xu, Shuling & Yang, Zihan & Deng, Nana & Wang, Bo, 2024. "Residents' willingness to be compensated for power rationing during peak hours based on choice experiment," Applied Energy, Elsevier, vol. 367(C).
    12. Zhong, Shengyuan & Wang, Xiaoyuan & Zhao, Jun & Li, Wenjia & Li, Hao & Wang, Yongzhen & Deng, Shuai & Zhu, Jiebei, 2021. "Deep reinforcement learning framework for dynamic pricing demand response of regenerative electric heating," Applied Energy, Elsevier, vol. 288(C).
    13. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    14. Xia, Mingchao & Song, Yuguang & Chen, Qifang, 2019. "Hierarchical control of thermostatically controlled loads oriented smart buildings," Applied Energy, Elsevier, vol. 254(C).
    15. Calver, Philippa & Simcock, Neil, 2021. "Demand response and energy justice: A critical overview of ethical risks and opportunities within digital, decentralised, and decarbonised futures," Energy Policy, Elsevier, vol. 151(C).
    16. Frate, G.F. & Cherubini, P. & Tacconelli, C. & Micangeli, A. & Ferrari, L. & Desideri, U., 2019. "Ramp rate abatement for wind power plants: A techno-economic analysis," Applied Energy, Elsevier, vol. 254(C).
    17. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    18. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
    19. Sharma, A. & Bhakar, R. & Tiwari, H.P. & Li, R. & Li, F., 2017. "A novel hierarchical contribution factor based model for distribution use-of-system charges," Applied Energy, Elsevier, vol. 208(C), pages 996-1006.
    20. Adhikari, Rajendra & Pipattanasomporn, M. & Rahman, S., 2018. "An algorithm for optimal management of aggregated HVAC power demand using smart thermostats," Applied Energy, Elsevier, vol. 217(C), pages 166-177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:218:y:2018:i:c:p:520-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.