IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp1639-1652.html
   My bibliography  Save this article

Predictability of occupant presence and performance gap in building energy simulation

Author

Listed:
  • Ahn, Ki-Uhn
  • Kim, Deuk-Woo
  • Park, Cheol-Soo
  • de Wilde, Pieter

Abstract

Occupant behavior is regarded as one of the major factors contributing to the discrepancy between simulation prediction and real energy use. Over the past several decades, occupants have been represented as fixed profiles of occupant presence in building energy simulation tools. Recently, stochastic models have been introduced to account for dynamic occupant presence. This stochastic approach is based on the premise that occupant presence can be described by empirical and probabilistic transition rules, e.g. Markov Chain.

Suggested Citation

  • Ahn, Ki-Uhn & Kim, Deuk-Woo & Park, Cheol-Soo & de Wilde, Pieter, 2017. "Predictability of occupant presence and performance gap in building energy simulation," Applied Energy, Elsevier, vol. 208(C), pages 1639-1652.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:1639-1652
    DOI: 10.1016/j.apenergy.2017.04.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917304737
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.04.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. López-Rodríguez, M.A. & Santiago, I. & Trillo-Montero, D. & Torriti, J. & Moreno-Munoz, A., 2013. "Analysis and modeling of active occupancy of the residential sector in Spain: An indicator of residential electricity consumption," Energy Policy, Elsevier, vol. 62(C), pages 742-751.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Tao & Liu, Xiangyu & Li, Guannan & Wang, Xing & Ma, Jiangqiaoyu & Xu, Chengliang & Mao, Qianjun, 2024. "A systematic review and comprehensive analysis of building occupancy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunusov, Timur & Torriti, Jacopo, 2021. "Distributional effects of Time of Use tariffs based on electricity demand and time use," Energy Policy, Elsevier, vol. 156(C).
    2. Braulio-Gonzalo, Marta & Bovea, María D. & Jorge-Ortiz, Andrea & Juan, Pablo, 2021. "Which is the best-fit response variable for modelling the energy consumption of households? An analysis based on survey data," Energy, Elsevier, vol. 231(C).
    3. Máté János Lőrincz & José Luis Ramírez-Mendiola & Jacopo Torriti, 2021. "Impact of Time-Use Behaviour on Residential Energy Consumption in the United Kingdom," Energies, MDPI, vol. 14(19), pages 1-32, October.
    4. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    5. Palacios-Garcia, E.J. & Moreno-Munoz, A. & Santiago, I. & Flores-Arias, J.M. & Bellido-Outeirino, F.J. & Moreno-Garcia, I.M., 2018. "A stochastic modelling and simulation approach to heating and cooling electricity consumption in the residential sector," Energy, Elsevier, vol. 144(C), pages 1080-1091.
    6. Santiago, I. & Moreno-Munoz, A. & Quintero-Jiménez, P. & Garcia-Torres, F. & Gonzalez-Redondo, M.J., 2021. "Electricity demand during pandemic times: The case of the COVID-19 in Spain," Energy Policy, Elsevier, vol. 148(PA).
    7. Lu, Xiaoxing & Li, Kangping & Xu, Hanchen & Wang, Fei & Zhou, Zhenyu & Zhang, Yagang, 2020. "Fundamentals and business model for resource aggregator of demand response in electricity markets," Energy, Elsevier, vol. 204(C).
    8. Salari, Mahmoud & Javid, Roxana J., 2017. "Modeling household energy expenditure in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 822-832.
    9. Torriti, Jacopo, 2020. "Temporal aggregation: Time use methodologies applied to residential electricity demand," Utilities Policy, Elsevier, vol. 64(C).
    10. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    11. Maruyama, Takuya & Fukahori, Tatsuya, 2020. "Households with every member out-of-home (HEMO): Comparison using the 1984, 1997, and 2012 household travel surveys in Kumamoto, Japan," Journal of Transport Geography, Elsevier, vol. 82(C).
    12. Bohlmann, Jessika Andreina & Inglesi-Lotz, Roula, 2018. "Analysing the South African residential sector's energy profile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 240-252.
    13. Zhaoxia Wang & Yan Ding & Huiyan Deng & Fan Yang & Neng Zhu, 2018. "An Occupant-Oriented Calculation Method of Building Interior Cooling Load Design," Sustainability, MDPI, vol. 10(6), pages 1-29, May.
    14. Deepu Krishnan & Scott Kelly & Yohan Kim, 2022. "A Meta-Analysis Review of Occupant Behaviour Models for Assessing Demand-Side Energy Consumption," Energies, MDPI, vol. 15(3), pages 1-23, February.
    15. McKenna, Eoghan & Thomson, Murray, 2016. "High-resolution stochastic integrated thermal–electrical domestic demand model," Applied Energy, Elsevier, vol. 165(C), pages 445-461.
    16. Gils, Hans Christian, 2014. "Assessment of the theoretical demand response potential in Europe," Energy, Elsevier, vol. 67(C), pages 1-18.
    17. Emilio J. Palacios-Garcia & Antonio Moreno-Muñoz & Isabel Santiago & Isabel M. Moreno-Garcia & María I. Milanés-Montero, 2017. "PV Hosting Capacity Analysis and Enhancement Using High Resolution Stochastic Modeling," Energies, MDPI, vol. 10(10), pages 1-22, September.
    18. Satoshi Nakano & Ayu Washizu, 2020. "On the Acceptability of Electricity Demand Side Management by Time of Day," Energies, MDPI, vol. 13(14), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:1639-1652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.