IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v206y2017icp612-622.html
   My bibliography  Save this article

Preferences for micro-cogeneration in Germany: Policy implications for grid expansion from a discrete choice experiment

Author

Listed:
  • Rommel, Kai
  • Sagebiel, Julian

Abstract

Increasing the share of renewable energies requires an extension of grid capacity and additional storage possibilities. Although load shifting has been identified asa key instrument to relieve an overloaded grid, technologies that enable the decentralization of load shifting have hardly penetrated the electricity market. In this paper, a discrete choice experiment is applied to investigate preferences and willingness to pay values for micro-cogeneration, a technology that has huge potential to enhance load shifting, and at the same time reduce costs and CO2 emissions for heating. Our study includes homeowners as well as tenants to capture the overall market potential. Drawing from a sample of 412 adult Germans, several drivers of willingness to pay for micro-cogeneration are identified such as cost and CO2 saving potential, contract specifics and a feed-in tariff. The results show that most people would be willing to invest in micro-cogeneration technologies but non-monetary obstacles, such as limited institutional support, hinder investment on a larger scale. Several sources of preference heterogeneity are identified, giving rise to the development of a large variety of products and incentive structures.

Suggested Citation

  • Rommel, Kai & Sagebiel, Julian, 2017. "Preferences for micro-cogeneration in Germany: Policy implications for grid expansion from a discrete choice experiment," Applied Energy, Elsevier, vol. 206(C), pages 612-622.
  • Handle: RePEc:eee:appene:v:206:y:2017:i:c:p:612-622
    DOI: 10.1016/j.apenergy.2017.08.216
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917312503
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.216?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michelsen, Carl Christian & Madlener, Reinhard, 2012. "Homeowners' preferences for adopting innovative residential heating systems: A discrete choice analysis for Germany," Energy Economics, Elsevier, vol. 34(5), pages 1271-1283.
    2. Decker, Thomas & Menrad, Klaus, 2015. "House owners' perceptions and factors influencing their choice of specific heating systems in Germany," Energy Policy, Elsevier, vol. 85(C), pages 150-161.
    3. Achtnicht, Martin, 2011. "Do environmental benefits matter? Evidence from a choice experiment among house owners in Germany," Ecological Economics, Elsevier, vol. 70(11), pages 2191-2200, September.
    4. Sauter, Raphael & Watson, Jim, 2007. "Strategies for the deployment of micro-generation: Implications for social acceptance," Energy Policy, Elsevier, vol. 35(5), pages 2770-2779, May.
    5. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2015. "Techno-economic and policy requirements for the market-entry of the fuel cell micro-CHP system in the residential sector," Applied Energy, Elsevier, vol. 143(C), pages 370-382.
    6. Schüwer, Dietmar & Krüger, Christine & Merten, Frank & Nebel, Arjuna, 2016. "The potential of grid-orientated distributed cogeneration on the minutes reserve market and how changing the operating mode impacts on CO2 emissions," Energy, Elsevier, vol. 110(C), pages 23-33.
    7. Ruokamo, Enni, 2016. "Household preferences of hybrid home heating systems – A choice experiment application," Energy Policy, Elsevier, vol. 95(C), pages 224-237.
    8. Feuerriegel, Stefan & Neumann, Dirk, 2016. "Integration scenarios of Demand Response into electricity markets: Load shifting, financial savings and policy implications," Energy Policy, Elsevier, vol. 96(C), pages 231-240.
    9. Robert J. Johnston & Kevin J. Boyle & Wiktor (Vic) Adamowicz & Jeff Bennett & Roy Brouwer & Trudy Ann Cameron & W. Michael Hanemann & Nick Hanley & Mandy Ryan & Riccardo Scarpa & Roger Tourangeau & Ch, 2017. "Contemporary Guidance for Stated Preference Studies," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(2), pages 319-405.
    10. Jung, Nusrat & Moula, Munjur E. & Fang, Tingting & Hamdy, Mohamed & Lahdelma, Risto, 2016. "Social acceptance of renewable energy technologies for buildings in the Helsinki Metropolitan Area of Finland," Renewable Energy, Elsevier, vol. 99(C), pages 813-824.
    11. Bliemer, Michiel C.J. & Rose, John M., 2013. "Confidence intervals of willingness-to-pay for random coefficient logit models," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 199-214.
    12. Sagebiel, Julian & Glenk, Klaus & Meyerhoff, Jürgen, 2017. "Spatially explicit demand for afforestation," Forest Policy and Economics, Elsevier, vol. 78(C), pages 190-199.
    13. Claudy, Marius C. & Michelsen, Claus & O'Driscoll, Aidan, 2011. "The diffusion of microgeneration technologies - assessing the influence of perceived product characteristics on home owners' willingness to pay," Energy Policy, Elsevier, vol. 39(3), pages 1459-1469, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Richard & Hsu, Shu-Chien & Zheng, Saina & Chen, Jieh-Haur & Li, Xuran Ivan, 2020. "Renewable energy microgrids: Economic evaluation and decision making for government policies to contribute to affordable and clean energy," Applied Energy, Elsevier, vol. 274(C).
    2. Hotaling, Chelsea & Bird, Stephen & Heintzelman, Martin D., 2021. "Willingness to pay for microgrids to enhance community resilience," Energy Policy, Elsevier, vol. 154(C).
    3. Hussain Abdalla Sajwani & Bassel Soudan & Abdul Ghani Olabi, 2024. "Empowering Sustainability: Understanding Determinants of Consumer Investment in Microgrid Technology in the UAE," Energies, MDPI, vol. 17(9), pages 1-28, May.
    4. Wilson, C. & Pettifor, H. & Chryssochoidis, G., 2018. "Quantitative modelling of why and how homeowners decide to renovate energy efficiently," Applied Energy, Elsevier, vol. 212(C), pages 1333-1344.
    5. Georgarakis, Elena & Bauwens, Thomas & Pronk, Anne-Marie & AlSkaif, Tarek, 2021. "Keep it green, simple and socially fair: A choice experiment on prosumers’ preferences for peer-to-peer electricity trading in the Netherlands," Energy Policy, Elsevier, vol. 159(C).
    6. Knoefel, Jan & Sagebiel, Julian & Yildiz, Özgür & Müller, Jakob R. & Rommel, Jens, 2018. "A consumer perspective on corporate governance in the energy transition: Evidence from a Discrete Choice Experiment in Germany," Energy Economics, Elsevier, vol. 75(C), pages 440-448.
    7. Liu, Xuan & Yang, Dujuan & Arentze, Theo & Wielders, Tom, 2023. "The willingness of social housing tenants to participate in natural gas-free heating systems project: Insights from a stated choice experiment in the Netherlands," Applied Energy, Elsevier, vol. 350(C).
    8. Wang, Juan & Zheng, Junjun & Yu, Liukai & Goh, Mark & Tang, Yunying & Huang, Yongchao, 2023. "Distributed Reputation-Distance iterative auction system for Peer-To-Peer power trading," Applied Energy, Elsevier, vol. 345(C).
    9. Cohen, Jed & Azarova, Valeriya & Kollmann, Andrea & Reichl, Johannes, 2019. "Q-complementarity in household adoption of photovoltaics and electricity-intensive goods: The case of electric vehicles," Energy Economics, Elsevier, vol. 83(C), pages 567-577.
    10. Cohen, Jed J. & Azarova, Valeriya & Kollmann, Andrea & Reichl, Johannes, 2021. "Preferences for community renewable energy investments in Europe," Energy Economics, Elsevier, vol. 100(C).
    11. Sommerfeldt, Nelson & Lemoine, Ida & Madani, Hatef, 2022. "Hide and seek: The supply and demand of information for household solar photovoltaic investment," Energy Policy, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pei-Hao & Keppo, Ilkka & Strachan, Neil, 2018. "Incorporating homeowners' preferences of heating technologies in the UK TIMES model," Energy, Elsevier, vol. 148(C), pages 716-727.
    2. Ruokamo, Enni, 2016. "Household preferences of hybrid home heating systems – A choice experiment application," Energy Policy, Elsevier, vol. 95(C), pages 224-237.
    3. Selvakkumaran, Sujeetha & Ahlgren, Erik O., 2019. "Determining the factors of household energy transitions: A multi-domain study," Technology in Society, Elsevier, vol. 57(C), pages 54-75.
    4. Schleich, Joachim & Tu, Gengyang & Faure, Corinne & Guetlein, Marie-Charlotte, 2021. "Would you prefer to rent rather than own your new heating system? Insights from a discrete choice experiment among owner-occupiers in the UK," Energy Policy, Elsevier, vol. 158(C).
    5. Tensay Meles & L. (Lisa B.) Ryan & Sanghamitra Mukherjee, 2019. "Preferences for Renewable Home Heating: A Choice Experiment Study of Heat Pump System in Ireland," Open Access publications 10197/11467, School of Economics, University College Dublin.
    6. Strazzera, Elisabetta & Meleddu, Daniela & Contu, Davide & Fornara, Ferdinando, 2024. "Willingness to pay for innovative heating/cooling systems: A comprehensive appraisal of drivers and barriers to adoption in Ireland and Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Jingchao, Zhang & Kotani, Koji & Saijo, Tatsuyoshi, 2018. "Public acceptance of environmentally friendly heating in Beijing: A case of a low temperature air source heat pump," Energy Policy, Elsevier, vol. 117(C), pages 75-85.
    8. Meles, Tensay Hadush & Ryan, Lisa & Mukherjee, Sanghamitra C., 2022. "Heterogeneity in preferences for renewable home heating systems among Irish households," Applied Energy, Elsevier, vol. 307(C).
    9. Stefania Troiano & Daniel Vecchiato & Francesco Marangon & Tiziano Tempesta & Federico Nassivera, 2019. "Households’ Preferences for a New ‘Climate-Friendly’ Heating System: Does Contribution to Reducing Greenhouse Gases Matter?," Energies, MDPI, vol. 12(13), pages 1-19, July.
    10. Weller, Priska & Elsasser, Peter, 2018. "Preferences for forest structural attributes in Germany – Evidence from a choice experiment," Forest Policy and Economics, Elsevier, vol. 93(C), pages 1-9.
    11. Ma, Ben & Yu, Yihua & Urban, Frauke, 2018. "Green transition of energy systems in rural China: National survey evidence of households’ discrete choices on water heaters," Energy Policy, Elsevier, vol. 113(C), pages 559-570.
    12. Girod, Bastien & Mayer, Sebastian & Nägele, Florian, 2017. "Economic versus belief-based models: Shedding light on the adoption of novel green technologies," Energy Policy, Elsevier, vol. 101(C), pages 415-426.
    13. Karytsas, Spyridon & Polyzou, Olympia & Karytsas, Constantine, 2019. "Factors affecting willingness to adopt and willingness to pay for a residential hybrid system that provides heating/cooling and domestic hot water," Renewable Energy, Elsevier, vol. 142(C), pages 591-603.
    14. Karytsas, Spyridon & Theodoropoulou, Helen, 2014. "Public awareness and willingness to adopt ground source heat pumps for domestic heating and cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 49-57.
    15. Enni Ruokamo & Mikołaj Czajkowski & Nick Hanley & Artti Juutinen & Rauli Svento, 2016. "Linking perceived choice complexity with scale heterogeneity in discrete choice experiments: home heating in Finland," Working Papers 2016-30, Faculty of Economic Sciences, University of Warsaw.
    16. Ortega-Izquierdo, Margarita & Paredes-Salvador, Andrés & Montoya-Rasero, Carlos, 2019. "Analysis of the decision making factors for heating and cooling systems in Spanish households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 175-185.
    17. Lang, Ghislaine & Farsi, Mehdi & Lanz, Bruno & Weber, Sylvain, 2021. "Energy efficiency and heating technology investments: Manipulating financial information in a discrete choice experiment," Resource and Energy Economics, Elsevier, vol. 64(C).
    18. Côté, Elizabeth & Pons-Seres de Brauwer, Cristian, 2023. "Preferences of homeowners for heat-pump leasing: Evidence from a choice experiment in France, Germany, and Switzerland," Energy Policy, Elsevier, vol. 183(C).
    19. Hecher, Maria & Hatzl, Stefanie & Knoeri, Christof & Posch, Alfred, 2017. "The trigger matters: The decision-making process for heating systems in the residential building sector," Energy Policy, Elsevier, vol. 102(C), pages 288-306.
    20. Galassi, Veronica & Madlener, Reinhard, 2014. "Identifying Business Models for Photovoltaic Systems with Storage in the Italian Market: A Discrete Choice Experiment," FCN Working Papers 19/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:206:y:2017:i:c:p:612-622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.