Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.03.045
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rao, Ashok D. & Francuz, David J., 2013. "An evaluation of advanced combined cycles," Applied Energy, Elsevier, vol. 102(C), pages 1178-1186.
- Kyprianidis, Konstantinos G. & Dahlquist, Erik, 2017. "On the trade-off between aviation NOx and energy efficiency," Applied Energy, Elsevier, vol. 185(P2), pages 1506-1516.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wu, Yuwen & Weng, Chunsheng & Zheng, Quan & Wei, Wanli & Bai, Qiaodong, 2021. "Experimental research on the performance of a rotating detonation combustor with a turbine guide vane," Energy, Elsevier, vol. 218(C).
- Inhestern, Lukas Benjamin & Peitsch, Dieter & Paniagua, Guillermo, 2024. "Flow irreversibility and heat transfer effects on turbine efficiency," Applied Energy, Elsevier, vol. 353(PA).
- Jan Kindracki & Krzysztof Wacko & Przemysław Woźniak & Stanisław Siatkowski & Łukasz Mężyk, 2020. "Influence of Gaseous Hydrogen Addition on Initiation of Rotating Detonation in Liquid Fuel–Air Mixtures," Energies, MDPI, vol. 13(19), pages 1-16, September.
- Qi, Lei & Dong, Jingnan & Hong, Wenpeng & Wang, Mingtian & Lu, Tao, 2023. "Investigation of rotating detonation gas turbine cycle under design and off-design conditions," Energy, Elsevier, vol. 264(C).
- Ding, Chenwei & Wu, Yuwen & Huang, Yakun & Zheng, Quan & Li, Qun & Xu, Gao & Kang, Chaohui & Weng, Chunsheng, 2023. "Wave mode analysis of a turbine guide vane-integrated rotating detonation combustor based on instantaneous frequency identification," Energy, Elsevier, vol. 284(C).
- Panagiotis Gallis & Daniela Anna Misul & Bastien Boust & Marc Bellenoue & Simone Salvadori, 2024. "Development of 1D Model of Constant-Volume Combustor and Numerical Analysis of the Exhaust Nozzle," Energies, MDPI, vol. 17(5), pages 1-24, March.
- Yuan Qiao & Li Lin & Wei Zhong & Kaisheng Huang, 2020. "Investigation on the Performance Characteristics of 2-Stroke Heavy Fuel Light Aeroengine (2SHFLA) with Different Fuel Injection Systems: Modeling and Comparative Simulation," Energies, MDPI, vol. 13(19), pages 1-39, October.
- Lu, Yiji & Roskilly, Anthony Paul & Yu, Xiaoli & Jiang, Long & Chen, Longfei, 2018. "Technical feasibility study of scroll-type rotary gasoline engine: A compact and efficient small-scale Humphrey cycle engine," Applied Energy, Elsevier, vol. 221(C), pages 67-74.
- Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
- Park, Yeseul & Choi, Minsung & Choi, Gyungmin, 2023. "Thermodynamic performance study of large-scale industrial gas turbine with methane/ammonia/hydrogen blended fuels," Energy, Elsevier, vol. 282(C).
- Jaeyoung Han & Jiwoong Jeong & Kyungin Cho & Sangseok Yu, 2018. "A Real-Time Combustion Instability Simulation with Comprehensive Thermo-Acoustic Dynamic Model," Energies, MDPI, vol. 11(4), pages 1-21, April.
- Park, Yeseul & Choi, Minsung & Kim, Dongmin & Lee, Joongsung & Choi, Gyungmin, 2021. "Performance analysis of large-scale industrial gas turbine considering stable combustor operation using novel blended fuel," Energy, Elsevier, vol. 236(C).
- Zhang, Zhaoli & Alelyani, Sami M. & Zhang, Nan & Zeng, Chao & Yuan, Yanping & Phelan, Patrick E., 2018. "Thermodynamic analysis of a novel sodium hydroxide-water solution absorption refrigeration, heating and power system for low-temperature heat sources," Applied Energy, Elsevier, vol. 222(C), pages 1-12.
- Michele Stefanizzi & Tommaso Capurso & Giovanni Filomeno & Marco Torresi & Giuseppe Pascazio, 2021. "Recent Combustion Strategies in Gas Turbines for Propulsion and Power Generation toward a Zero-Emissions Future: Fuels, Burners, and Combustion Techniques," Energies, MDPI, vol. 14(20), pages 1-20, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sahu, Mithilesh Kumar & Sanjay,, 2017. "Comparative exergoeconomics of power utilities: Air-cooled gas turbine cycle and combined cycle configurations," Energy, Elsevier, vol. 139(C), pages 42-51.
- Kotowicz, Janusz & Brzęczek, Mateusz, 2019. "Comprehensive multivariable analysis of the possibility of an increase in the electrical efficiency of a modern combined cycle power plant with and without a CO2 capture and compression installations ," Energy, Elsevier, vol. 175(C), pages 1100-1120.
- Chen, Longfei & Zhang, Zhichao & Lu, Yiji & Zhang, Chi & Zhang, Xin & Zhang, Cuiqi & Roskilly, Anthony Paul, 2017. "Experimental study of the gaseous and particulate matter emissions from a gas turbine combustor burning butyl butyrate and ethanol blends," Applied Energy, Elsevier, vol. 195(C), pages 693-701.
- Pan, Ming & Aziz, Farah & Li, Baohong & Perry, Simon & Zhang, Nan & Bulatov, Igor & Smith, Robin, 2016. "Application of optimal design methodologies in retrofitting natural gas combined cycle power plants with CO2 capture," Applied Energy, Elsevier, vol. 161(C), pages 695-706.
- Rossi, Iacopo & Sorce, Alessandro & Traverso, Alberto, 2017. "Gas turbine combined cycle start-up and stress evaluation: A simplified dynamic approach," Applied Energy, Elsevier, vol. 190(C), pages 880-890.
- Chen, Qin & Rao, Ashok & Samuelsen, Scott, 2014. "H2 coproduction in IGCC with CCS via coal and biomass mixture using advanced technologies," Applied Energy, Elsevier, vol. 118(C), pages 258-270.
- Dong, Pengcheng & Tang, Hailong & Chen, Min & Zou, Zhengping, 2018. "Overall performance design of paralleled heat release and compression system for hypersonic aeroengine," Applied Energy, Elsevier, vol. 220(C), pages 36-46.
- Kotowicz, Janusz & Brzęczek, Mateusz & Job, Marcin, 2018. "The thermodynamic and economic characteristics of the modern combined cycle power plant with gas turbine steam cooling," Energy, Elsevier, vol. 164(C), pages 359-376.
- Andrea Luca Tasca & Vittorio Cipolla & Karim Abu Salem & Monica Puccini, 2021. "Innovative Box-Wing Aircraft: Emissions and Climate Change," Sustainability, MDPI, vol. 13(6), pages 1-25, March.
- Carcasci, Carlo & Cosi, Lorenzo & Ferraro, Riccardo & Pacifici, Beniamino, 2017. "Effect of a real steam turbine on thermoeconomic analysis of combined cycle power plants," Energy, Elsevier, vol. 138(C), pages 32-47.
- Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
- Sanjay, & Prasad, Bishwa N., 2013. "Energy and exergy analysis of intercooled combustion-turbine based combined cycle power plant," Energy, Elsevier, vol. 59(C), pages 277-284.
- Zhang, R.C. & Bai, N.J. & Fan, W.J. & Huang, X.Y. & Fan, X.Q., 2019. "Influence of flame stabilization and fuel injection modes on the flow and combustion characteristics of gas turbine combustor with cavity," Energy, Elsevier, vol. 189(C).
- Block Novelo, David Alejandro & Igie, Uyioghosa, 2018. "Aero engine compressor cooling by water injection - Part 2: Performance and emission reductions," Energy, Elsevier, vol. 160(C), pages 1236-1243.
- Hanak, D.P. & Kolios, A.J. & Biliyok, C. & Manovic, V., 2015. "Probabilistic performance assessment of a coal-fired power plant," Applied Energy, Elsevier, vol. 139(C), pages 350-364.
- Strauss, Jack & Li, Hongchang & Cui, Jinli, 2021. "High-speed Rail's impact on airline demand and air carbon emissions in China," Transport Policy, Elsevier, vol. 109(C), pages 85-97.
- Ding, Chenwei & Wu, Yuwen & Huang, Yakun & Zheng, Quan & Li, Qun & Xu, Gao & Kang, Chaohui & Weng, Chunsheng, 2023. "Wave mode analysis of a turbine guide vane-integrated rotating detonation combustor based on instantaneous frequency identification," Energy, Elsevier, vol. 284(C).
- Chen, Qin & Rao, Ashok & Samuelsen, Scott, 2015. "Coproduction of transportation fuels in advanced IGCCs via coal and biomass mixtures," Applied Energy, Elsevier, vol. 157(C), pages 851-860.
More about this item
Keywords
Gas turbine engines; Pressure gain combustion; Engine cycle analysis; Detonation engines; Propulsion; Thermodynamic modeling; Method of characteristics; Engine matching;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:195:y:2017:i:c:p:247-256. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.