IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v193y2017icp346-355.html
   My bibliography  Save this article

Electric train energy consumption modeling

Author

Listed:
  • Wang, Jinghui
  • Rakha, Hesham A.

Abstract

The paper develops an electric train energy consumption modeling framework considering instantaneous regenerative braking efficiency in support of a rail simulation system. The model is calibrated with data from Portland, Oregon using an unconstrained non-linear optimization procedure, and validated using data from Chicago, Illinois by comparing model predictions against the National Transit Database (NTD) estimates. The results demonstrate that regenerative braking efficiency varies as an exponential function of the deceleration level, rather than an average constant as assumed in previous studies. The model predictions are demonstrated to be consistent with the NTD estimates, producing a predicted error of 1.87% and −2.31%. The paper demonstrates that energy recovery reduces the overall power consumption by 20% for the tested Chicago route. Furthermore, the paper demonstrates that the proposed modeling approach is able to capture energy consumption differences associated with train, route and operational parameters, and thus is applicable for project-level analysis. The model can be easily implemented in traffic simulation software, used in smartphone applications and eco-transit programs given its fast execution time and easy integration in complex frameworks.

Suggested Citation

  • Wang, Jinghui & Rakha, Hesham A., 2017. "Electric train energy consumption modeling," Applied Energy, Elsevier, vol. 193(C), pages 346-355.
  • Handle: RePEc:eee:appene:v:193:y:2017:i:c:p:346-355
    DOI: 10.1016/j.apenergy.2017.02.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917301861
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.02.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lewis, Anne Marie & Kelly, Jarod C. & Keoleian, Gregory A., 2014. "Vehicle lightweighting vs. electrification: Life cycle energy and GHG emissions results for diverse powertrain vehicles," Applied Energy, Elsevier, vol. 126(C), pages 13-20.
    2. Gould, Gregory & Niemeier, Debbie A., 2009. "Review of Regional Locomotive Emission Modeling and the Constraints Posed by Activity Data," Institute of Transportation Studies, Working Paper Series qt3gn498w6, Institute of Transportation Studies, UC Davis.
    3. Rambaldi, Lorenzo & Bocci, Enrico & Orecchini, Fabio, 2011. "Preliminary experimental evaluation of a four wheel motors, batteries plus ultracapacitors and series hybrid powertrain," Applied Energy, Elsevier, vol. 88(2), pages 442-448, February.
    4. Feng, Xuesong & Mao, Baohua & Feng, Xujie & Feng, Jia, 2011. "Study on the maximum operation speeds of metro trains for energy saving as well as transport efficiency improvement," Energy, Elsevier, vol. 36(11), pages 6577-6582.
    5. Fiori, Chiara & Ahn, Kyoungho & Rakha, Hesham A., 2016. "Power-based electric vehicle energy consumption model: Model development and validation," Applied Energy, Elsevier, vol. 168(C), pages 257-268.
    6. De Gennaro, Michele & Paffumi, Elena & Scholz, Harald & Martini, Giorgio, 2014. "GIS-driven analysis of e-mobility in urban areas: An evaluation of the impact on the electric energy grid," Applied Energy, Elsevier, vol. 124(C), pages 94-116.
    7. Liu, Rongfang (Rachel) & Golovitcher, Iakov M., 2003. "Energy-efficient operation of rail vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 917-932, December.
    8. Li, Xiang & Lo, Hong K., 2014. "An energy-efficient scheduling and speed control approach for metro rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 73-89.
    9. Feng, Xuesong, 2011. "Optimization of target speeds of high-speed railway trains for traction energy saving and transport efficiency improvement," Energy Policy, Elsevier, vol. 39(12), pages 7658-7665.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atiquzzaman Khan Ankur & Stefan Kraus & Thomas Grube & Rui Castro & Detlef Stolten, 2022. "A Versatile Model for Estimating the Fuel Consumption of a Wide Range of Transport Modes," Energies, MDPI, vol. 15(6), pages 1-24, March.
    2. Małgorzata Ćwil & Witold Bartnik & Sebastian Jarzębowski, 2021. "Railway Vehicle Energy Efficiency as a Key Factor in Creating Sustainable Transportation Systems," Energies, MDPI, vol. 14(16), pages 1-14, August.
    3. Mo, Pengli & D’Ariano, Andrea & Yang, Lixing & Veelenturf, Lucas P. & Gao, Ziyou, 2021. "An exact method for the integrated optimization of subway lines operation strategies with asymmetric passenger demand and operating costs," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 283-321.
    4. Yuan, Weichang & Frey, H. Christopher, 2020. "Potential for metro rail energy savings and emissions reduction via eco-driving," Applied Energy, Elsevier, vol. 268(C).
    5. Aredah, Ahmed & Du, Jianhe & Hegazi, Mohamed & List, George & Rakha, Hesham A., 2024. "Comparative analysis of alternative powertrain technologies in freight trains: A numerical examination towards sustainable rail transport," Applied Energy, Elsevier, vol. 356(C).
    6. Kapetanović, Marko & Núñez, Alfredo & van Oort, Niels & Goverde, Rob M.P., 2021. "Reducing fuel consumption and related emissions through optimal sizing of energy storage systems for diesel-electric trains," Applied Energy, Elsevier, vol. 294(C).
    7. Oke, Jimi B. & Akkinepally, Arun Prakash & Chen, Siyu & Xie, Yifei & Aboutaleb, Youssef M. & Azevedo, Carlos Lima & Zegras, P. Christopher & Ferreira, Joseph & Ben-Akiva, Moshe, 2020. "Evaluating the systemic effects of automated mobility-on-demand services via large-scale agent-based simulation of auto-dependent prototype cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 98-126.
    8. Alexandre ZARIFYAN & Adel MUSTAFIN & Elena VALENTSEVA & Alexandre SHAPSHAL, 2021. "Capacity Utilization Level Of Freight Electric Locomotives And Evaluation Of Expense Reduction On Consumed Energy Due To Modernization," Transport Problems, Silesian University of Technology, vol. 16(4), pages 5-14, December.
    9. Pan, Deng & Zhao, Liting & Luo, Qing & Zhang, Chuansheng & Chen, Zejun, 2018. "Study on the performance improvement of urban rail transit system," Energy, Elsevier, vol. 161(C), pages 1154-1171.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fiori, Chiara & Ahn, Kyoungho & Rakha, Hesham A., 2016. "Power-based electric vehicle energy consumption model: Model development and validation," Applied Energy, Elsevier, vol. 168(C), pages 257-268.
    2. Xuesong Feng & Hanxiao Zhang & Yong Ding & Zhili Liu & Hongqin Peng & Bin Xu, 2013. "A Review Study on Traction Energy Saving of Rail Transport," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-9, September.
    3. Ning, Jingjie & Zhou, Yonghua & Long, Fengchu & Tao, Xin, 2018. "A synergistic energy-efficient planning approach for urban rail transit operations," Energy, Elsevier, vol. 151(C), pages 854-863.
    4. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2016. "The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 482-508.
    5. Cheng Gong & Shiwen Zhang & Feng Zhang & Jianguo Jiang & Xinheng Wang, 2014. "An Integrated Energy-Efficient Operation Methodology for Metro Systems Based on a Real Case of Shanghai Metro Line One," Energies, MDPI, vol. 7(11), pages 1-25, November.
    6. Canca, David & Zarzo, Alejandro, 2017. "Design of energy-Efficient timetables in two-way railway rapid transit lines," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 142-161.
    7. Luan, Xiaojie & Wang, Yihui & De Schutter, Bart & Meng, Lingyun & Lodewijks, Gabriel & Corman, Francesco, 2018. "Integration of real-time traffic management and train control for rail networks - Part 2: Extensions towards energy-efficient train operations," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 72-94.
    8. Mo Chen & Zhuang Xiao & Pengfei Sun & Qingyuan Wang & Bo Jin & Xiaoyun Feng, 2019. "Energy-Efficient Driving Strategies for Multi-Train by Optimization and Update Speed Profiles Considering Transmission Losses of Regenerative Energy," Energies, MDPI, vol. 12(18), pages 1-25, September.
    9. Yin, Jiateng & Yang, Lixing & Tang, Tao & Gao, Ziyou & Ran, Bin, 2017. "Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 182-213.
    10. Wang, Xuekai & Tang, Tao & Su, Shuai & Yin, Jiateng & Gao, Ziyou & Lv, Nan, 2021. "An integrated energy-efficient train operation approach based on the space-time-speed network methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    11. Zhou, Leishan & Tong, Lu (Carol) & Chen, Junhua & Tang, Jinjin & Zhou, Xuesong, 2017. "Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 157-181.
    12. Ye, Hongbo & Liu, Ronghui, 2016. "A multiphase optimal control method for multi-train control and scheduling on railway lines," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 377-393.
    13. Gupta, Shuvomoy Das & Tobin, J. Kevin & Pavel, Lacra, 2016. "A two-step linear programming model for energy-efficient timetables in metro railway networks," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 57-74.
    14. Wang, Chao & Meng, Xin & Guo, Mingxue & Li, Hao & Hou, Zhiqiang, 2022. "An integrated energy-efficient and transfer-accessible model for the last train timetabling problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    15. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2018. "The two-train separation problem on non-level track—driving strategies that minimize total required tractive energy subject to prescribed section clearance times," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 135-167.
    16. Jie Yang & Limin Jia & Shaofeng Lu & Yunxiao Fu & Ji Ge, 2016. "Energy-Efficient Speed Profile Approximation: An Optimal Switching Region-Based Approach with Adaptive Resolution," Energies, MDPI, vol. 9(10), pages 1-27, September.
    17. Kyoungho Ahn & Sangjun Park & Hesham A. Rakha, 2020. "Impact of Intersection Control on Battery Electric Vehicle Energy Consumption," Energies, MDPI, vol. 13(12), pages 1-11, June.
    18. Scheepmaker, Gerben M. & Goverde, Rob M.P. & Kroon, Leo G., 2017. "Review of energy-efficient train control and timetabling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 355-376.
    19. Wang, Pengling & Goverde, Rob M.P., 2019. "Multi-train trajectory optimization for energy-efficient timetabling," European Journal of Operational Research, Elsevier, vol. 272(2), pages 621-635.
    20. Yang, Xin & Chen, Anthony & Ning, Bin & Tang, Tao, 2016. "A stochastic model for the integrated optimization on metro timetable and speed profile with uncertain train mass," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 424-445.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:193:y:2017:i:c:p:346-355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.