IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v179y2016icp1106-1122.html
   My bibliography  Save this article

Thermo-mechanical parametric analysis of packed-bed thermocline energy storage tanks

Author

Listed:
  • González, Ignacio
  • Pérez-Segarra, Carlos David
  • Lehmkuhl, Oriol
  • Torras, Santiago
  • Oliva, Assensi

Abstract

A packed-bed thermocline tank represents a proved cheaper thermal energy storage for concentrated solar power plants compared with the commonly-built two-tank system. However, its implementation has been stopped mainly due to the vessel’s thermal ratcheting concern, which would compromise its structural integrity. In order to have a better understanding of the commercial viability of thermocline approach, regarding energetic effectiveness and structural reliability, a new numerical simulation platform has been developed. The model dynamically solves and couples all the significant components of the subsystem, being able to evaluate its thermal and mechanical response over plant normal operation. The filler material is considered as a cohesionless bulk solid with thermal expansion. For the stresses on the tank wall the general thermoelastic theory is used. First, the numerical model is validated with the Solar One thermocline case, and then a parametric analysis is carried out by settling this storage technology in two real plants with a temperature rise of 100°C and 275°C. The numerical results show a better storage performance together with the lowest temperature difference, but both options achieve suitable structural factors of safety with a proper design.

Suggested Citation

  • González, Ignacio & Pérez-Segarra, Carlos David & Lehmkuhl, Oriol & Torras, Santiago & Oliva, Assensi, 2016. "Thermo-mechanical parametric analysis of packed-bed thermocline energy storage tanks," Applied Energy, Elsevier, vol. 179(C), pages 1106-1122.
  • Handle: RePEc:eee:appene:v:179:y:2016:i:c:p:1106-1122
    DOI: 10.1016/j.apenergy.2016.06.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916308996
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.06.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodríguez, I. & Pérez-Segarra, C.D. & Lehmkuhl, O. & Oliva, A., 2013. "Modular object-oriented methodology for the resolution of molten salt storage tanks for CSP plants," Applied Energy, Elsevier, vol. 109(C), pages 402-414.
    2. Medrano, Marc & Gil, Antoni & Martorell, Ingrid & Potau, Xavi & Cabeza, Luisa F., 2010. "State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 56-72, January.
    3. Galione, P.A. & Pérez-Segarra, C.D. & Rodríguez, I. & Oliva, A. & Rigola, J., 2015. "Multi-layered solid-PCM thermocline thermal storage concept for CSP plants. Numerical analysis and perspectives," Applied Energy, Elsevier, vol. 142(C), pages 337-351.
    4. Xu, Chao & Wang, Zhifeng & He, Yaling & Li, Xin & Bai, Fengwu, 2012. "Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system," Applied Energy, Elsevier, vol. 92(C), pages 65-75.
    5. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    6. Yang, Zhen & Garimella, Suresh V., 2010. "Molten-salt thermal energy storage in thermoclines under different environmental boundary conditions," Applied Energy, Elsevier, vol. 87(11), pages 3322-3329, November.
    7. Wu, Ming & Li, Mingjia & Xu, Chao & He, Yaling & Tao, Wenquan, 2014. "The impact of concrete structure on the thermal performance of the dual-media thermocline thermal storage tank using concrete as the solid medium," Applied Energy, Elsevier, vol. 113(C), pages 1363-1371.
    8. Gil, Antoni & Medrano, Marc & Martorell, Ingrid & Lázaro, Ana & Dolado, Pablo & Zalba, Belén & Cabeza, Luisa F., 2010. "State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 31-55, January.
    9. Flueckiger, Scott & Yang, Zhen & Garimella, Suresh V., 2011. "An integrated thermal and mechanical investigation of molten-salt thermocline energy storage," Applied Energy, Elsevier, vol. 88(6), pages 2098-2105, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fasquelle, T. & Falcoz, Q. & Neveu, P. & Hoffmann, J.-F., 2018. "A temperature threshold evaluation for thermocline energy storage in concentrated solar power plants," Applied Energy, Elsevier, vol. 212(C), pages 1153-1164.
    2. Esence, Thibaut & Desrues, Tristan & Fourmigué, Jean-François & Cwicklinski, Grégory & Bruch, Arnaud & Stutz, Benoit, 2019. "Experimental study and numerical modelling of high temperature gas/solid packed-bed heat storage systems," Energy, Elsevier, vol. 180(C), pages 61-78.
    3. Sciacovelli, Adriano & Li, Yongliang & Chen, Haisheng & Wu, Yuting & Wang, Jihong & Garvey, Seamus & Ding, Yulong, 2017. "Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – Link between components performance and plant performance," Applied Energy, Elsevier, vol. 185(P1), pages 16-28.
    4. Elfeky, Karem Elsayed & Mohammed, Abubakar Gambo & Wang, Qiuwang, 2021. "Cycle cut-off criterion effect on the performance of cascaded, sensible, combined sensible-latent heat storage tank for concentrating solar power plants," Energy, Elsevier, vol. 230(C).
    5. Elfeky, Karem Elsayed & Mohammed, Abubakar Gambo & Ahmed, Naveed & Wang, Qiuwang, 2023. "Thermo-mechanical investigation of the multi-layer thermocline tank for parabolic trough power plants," Energy, Elsevier, vol. 268(C).
    6. Yunshen Zhang & Yun Guo & Jiaao Zhu & Weijian Yuan & Feng Zhao, 2024. "New Advances in Materials, Applications, and Design Optimization of Thermocline Heat Storage: Comprehensive Review," Energies, MDPI, vol. 17(10), pages 1-41, May.
    7. Ortega-Fernández, Iñigo & Zavattoni, Simone A. & Rodríguez-Aseguinolaza, Javier & D'Aguanno, Bruno & Barbato, Maurizio C., 2017. "Analysis of an integrated packed bed thermal energy storage system for heat recovery in compressed air energy storage technology," Applied Energy, Elsevier, vol. 205(C), pages 280-293.
    8. Calderón-Vásquez, Ignacio & Cortés, Eduardo & García, Jesús & Segovia, Valentina & Caroca, Alejandro & Sarmiento, Cristóbal & Barraza, Rodrigo & Cardemil, José M., 2021. "Review on modeling approaches for packed-bed thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2018. "System-level performance optimization of molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 226(C), pages 225-239.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Palacios, A. & Barreneche, C. & Navarro, M.E. & Ding, Y., 2020. "Thermal energy storage technologies for concentrated solar power – A review from a materials perspective," Renewable Energy, Elsevier, vol. 156(C), pages 1244-1265.
    2. Wang, Letian & Yang, Zhen & Duan, Yuanyuan, 2015. "Influence of flow distribution on the thermal performance of dual-media thermocline energy storage systems," Applied Energy, Elsevier, vol. 142(C), pages 283-292.
    3. Xu, Chao & Wang, Zhifeng & He, Yaling & Li, Xin & Bai, Fengwu, 2012. "Parametric study and standby behavior of a packed-bed molten salt thermocline thermal storage system," Renewable Energy, Elsevier, vol. 48(C), pages 1-9.
    4. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2016. "Thermal performance and cost analysis of a multi-layered solid-PCM thermocline thermal energy storage for CSP tower plants," Applied Energy, Elsevier, vol. 178(C), pages 784-799.
    5. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    6. ELSihy, ELSaeed Saad & Mokhtar, Omar & Xu, Chao & Du, Xiaoze & Adel, Mohamed, 2023. "Cyclic performance characterization of a high-temperature thermal energy storage system packed with rock/slag pebbles granules combined with encapsulated phase change materials," Applied Energy, Elsevier, vol. 331(C).
    7. Xu, Chao & Wang, Zhifeng & He, Yaling & Li, Xin & Bai, Fengwu, 2012. "Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system," Applied Energy, Elsevier, vol. 92(C), pages 65-75.
    8. Alva, Guruprasad & Liu, Lingkun & Huang, Xiang & Fang, Guiyin, 2017. "Thermal energy storage materials and systems for solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 693-706.
    9. Galione, P.A. & Pérez-Segarra, C.D. & Rodríguez, I. & Oliva, A. & Rigola, J., 2015. "Multi-layered solid-PCM thermocline thermal storage concept for CSP plants. Numerical analysis and perspectives," Applied Energy, Elsevier, vol. 142(C), pages 337-351.
    10. Calvet, Nicolas & Gomez, Judith C. & Faik, Abdessamad & Roddatis, Vladimir V. & Meffre, Antoine & Glatzmaier, Greg C. & Doppiu, Stefania & Py, Xavier, 2013. "Compatibility of a post-industrial ceramic with nitrate molten salts for use as filler material in a thermocline storage system," Applied Energy, Elsevier, vol. 109(C), pages 387-393.
    11. Suárez, Christian & Iranzo, Alfredo & Pino, F.J. & Guerra, J., 2015. "Transient analysis of the cooling process of molten salt thermal storage tanks due to standby heat loss," Applied Energy, Elsevier, vol. 142(C), pages 56-65.
    12. Tiskatine, R. & Eddemani, A. & Gourdo, L. & Abnay, B. & Ihlal, A. & Aharoune, A. & Bouirden, L., 2016. "Experimental evaluation of thermo-mechanical performances of candidate rocks for use in high temperature thermal storage," Applied Energy, Elsevier, vol. 171(C), pages 243-255.
    13. Cocco, Daniele & Serra, Fabio, 2015. "Performance comparison of two-tank direct and thermocline thermal energy storage systems for 1 MWe class concentrating solar power plants," Energy, Elsevier, vol. 81(C), pages 526-536.
    14. Rodríguez, I. & Pérez-Segarra, C.D. & Lehmkuhl, O. & Oliva, A., 2013. "Modular object-oriented methodology for the resolution of molten salt storage tanks for CSP plants," Applied Energy, Elsevier, vol. 109(C), pages 402-414.
    15. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    16. Bravo, Ruben & Ortiz, Carlos & Chacartegui, Ricardo & Friedrich, Daniel, 2021. "Multi-objective optimisation and guidelines for the design of dispatchable hybrid solar power plants with thermochemical energy storage," Applied Energy, Elsevier, vol. 282(PB).
    17. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    18. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    19. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    20. Tehrani, S. Saeed Mostafavi & Taylor, Robert A. & Saberi, Pouya & Diarce, Gonzalo, 2016. "Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants," Renewable Energy, Elsevier, vol. 96(PA), pages 120-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:179:y:2016:i:c:p:1106-1122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.