IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v175y2016icp536-544.html
   My bibliography  Save this article

Novel hierarchical SnO2 microsphere catalyst coated on gas diffusion electrode for enhancing energy efficiency of CO2 reduction to formate fuel

Author

Listed:
  • Fu, Yishu
  • Li, Yanan
  • Zhang, Xia
  • Liu, Yuyu
  • Qiao, Jinli
  • Zhang, Jiujun
  • Wilkinson, David P.

Abstract

The conversion of carbon dioxide to value-added fuel using electrical energy generated intermittently from renewable energy sources is very promising in terms of energy usage reconciliation. The process converts greenhouse carbon dioxide gas to produce diverse attractive chemicals and fuels like methanol, formate, and other hydrocarbons. In this paper, the electroreduction of CO2 to formate in aqueous solution is performed by using novel hierarchical tin oxide microsphere (HMS-SnO2) particles deposited over gas diffusion layer electrode (HMS-SnO2/GDE). The experiment is carried out in a divided H-type two-compartment cell with a Nafion® membrane as the diaphragm separating the cathodic and anodic compartments. The HMS-SnO2 catalysts are synthesized by a facile hydrothermal self-assembled process using different ratios of ethanol to distilled water in the synthetic solution. Due to the outstanding catalytic activity and selectivity toward CO2 electroreduction, SnO2-86/GDE exhibits a high Faradaic efficiency of 62% toward formate formation at −1.7V vs. SHE (Standard Hydrogen Electrode). The electrode durability is also observed with a stable current density over 12h of continuous electrolysis operation. The superior performance is credited to the morphology- and size-controlled hierarchical structure, which may provide more active sites to accelerate the slow kinetics of CO2 reduction, leading to the improved energy efficiency. During electrolysis process, KHCO3 electrolyte is found to have some contribution to formate formation on the micro-structured tin oxide catalysts coated GDE electrode.

Suggested Citation

  • Fu, Yishu & Li, Yanan & Zhang, Xia & Liu, Yuyu & Qiao, Jinli & Zhang, Jiujun & Wilkinson, David P., 2016. "Novel hierarchical SnO2 microsphere catalyst coated on gas diffusion electrode for enhancing energy efficiency of CO2 reduction to formate fuel," Applied Energy, Elsevier, vol. 175(C), pages 536-544.
  • Handle: RePEc:eee:appene:v:175:y:2016:i:c:p:536-544
    DOI: 10.1016/j.apenergy.2016.03.115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916304391
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.03.115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Del Castillo, A. & Alvarez-Guerra, M. & Solla-Gullón, J. & Sáez, A. & Montiel, V. & Irabien, A., 2015. "Electrocatalytic reduction of CO2 to formate using particulate Sn electrodes: Effect of metal loading and particle size," Applied Energy, Elsevier, vol. 157(C), pages 165-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Bao-Xia & Zhao, Juan & Wang, Long-Zheng & Teng, Yun-Lei & Liu, Wen-Long & Wang, Lu, 2017. "Mechanochemical synthesis of COx-free hydrogen and methane fuel mixtures at room temperature from light metal hydrides and carbon dioxide," Applied Energy, Elsevier, vol. 204(C), pages 741-748.
    2. Wang, Fuhuan & Xie, Heping & Liu, Tao & Wu, Yifan & Chen, Bin, 2020. "Highly dispersed CuFe-nitrogen active sites electrode for synergistic electrochemical CO2 reduction at low overpotential," Applied Energy, Elsevier, vol. 269(C).
    3. An, Xiaowei & Li, Shasha & Hao, Xiaoqiong & Xie, Zhengkun & Du, Xiao & Wang, Zhongde & Hao, Xiaogang & Abudula, Abuliti & Guan, Guoqing, 2021. "Common strategies for improving the performances of tin and bismuth-based catalysts in the electrocatalytic reduction of CO2 to formic acid/formate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Tufa, Ramato Ashu & Chanda, Debabrata & Ma, Ming & Aili, David & Demissie, Taye Beyene & Vaes, Jan & Li, Qingfeng & Liu, Shanhu & Pant, Deepak, 2020. "Towards highly efficient electrochemical CO2 reduction: Cell designs, membranes and electrocatalysts," Applied Energy, Elsevier, vol. 277(C).
    5. Shahgaldi, Samaneh & Alaefour, Ibrahim & Li, Xianguo, 2018. "Impact of manufacturing processes on proton exchange membrane fuel cell performance," Applied Energy, Elsevier, vol. 225(C), pages 1022-1032.
    6. Chai, Rukuan & Liu, Yuetian & Wang, Jingru & Liu, Qianjun & Rui, Zhenhua, 2022. "CO2 utilization and sequestration in Reservoir: Effects and mechanisms of CO2 electrochemical reduction," Applied Energy, Elsevier, vol. 323(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).
    2. Tufa, Ramato Ashu & Chanda, Debabrata & Ma, Ming & Aili, David & Demissie, Taye Beyene & Vaes, Jan & Li, Qingfeng & Liu, Shanhu & Pant, Deepak, 2020. "Towards highly efficient electrochemical CO2 reduction: Cell designs, membranes and electrocatalysts," Applied Energy, Elsevier, vol. 277(C).
    3. Wang, Fuhuan & Xie, Heping & Liu, Tao & Wu, Yifan & Chen, Bin, 2020. "Highly dispersed CuFe-nitrogen active sites electrode for synergistic electrochemical CO2 reduction at low overpotential," Applied Energy, Elsevier, vol. 269(C).
    4. Pan, Qin & Tian, Xiaochun & Li, Junpeng & Wu, Xuee & Zhao, Feng, 2021. "Interfacial electron transfer for carbon dioxide valorization in hybrid inorganic-microbial systems," Applied Energy, Elsevier, vol. 292(C).
    5. Lu, Xu & Leung, Dennis Y.C. & Wang, Huizhi & Maroto-Valer, M. Mercedes & Xuan, Jin, 2016. "A pH-differential dual-electrolyte microfluidic electrochemical cells for CO2 utilization," Renewable Energy, Elsevier, vol. 95(C), pages 277-285.
    6. Zhang, Lijuan & Ong, Jacky & Liu, Junyi & Li, Sam Fong Yau, 2017. "Enzymatic electrosynthesis of formate from CO2 reduction in a hybrid biofuel cell system," Renewable Energy, Elsevier, vol. 108(C), pages 581-588.
    7. Yue, Pengtao & Kang, Zhongyin & Fu, Qian & Li, Jun & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2021. "Life cycle and economic analysis of chemicals production via electrolytic (bi)carbonate and gaseous CO2 conversion," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:175:y:2016:i:c:p:536-544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.