IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v160y2015icp266-285.html
   My bibliography  Save this article

Dryout avoidance control for multi-evaporator vapor compression cycle cooling

Author

Listed:
  • Pollock, Daniel T.
  • Yang, Zehao
  • Wen, John T.

Abstract

Two-phase cooling systems (e.g., pump-loops, vapor compression cycles) present a promising approach to the cooling of modern high power electronic systems. Such systems can achieve high coefficient of heat transfer but may incur dangerously high temperature when the imposed heat flux exceeds the critical heat flux (CHF). This paper presents a new control strategy that provides robust CHF avoidance in two-phase cooling for multiple evaporators under dynamic heat loads. This approach operates near the CHF to allow reduced coolant flow rates and greater system efficiency compared with the typical, and more conservative, open-loop or worst-case control strategies. The control architecture consists of two loops: an outer loop to determine evaporator mass flow rate demand, and an inner loop to supply and distribute the coolant using system actuators. Each control loop is implemented with feedforward based on static models as well as proportional–integral (PI) feedback controllers, and the decentralized approach allows scalable control design without the need for high fidelity nonlinear dynamic models. Simulations and corresponding experimental controller validations were conducted using a three-evaporator vapor compression cycle (VCC) testbed with transient imposed heat flux. The full closed-loop system is shown to be able to operate near CHF while avoiding CHF under transient heat flux, demonstrating both efficiency and robustness.

Suggested Citation

  • Pollock, Daniel T. & Yang, Zehao & Wen, John T., 2015. "Dryout avoidance control for multi-evaporator vapor compression cycle cooling," Applied Energy, Elsevier, vol. 160(C), pages 266-285.
  • Handle: RePEc:eee:appene:v:160:y:2015:i:c:p:266-285
    DOI: 10.1016/j.apenergy.2015.08.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915010491
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.08.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marcinichen, Jackson Braz & Olivier, Jonathan A. & Oliveira, Vinicius de & Thome, John R., 2012. "A review of on-chip micro-evaporation: Experimental evaluation of liquid pumping and vapor compression driven cooling systems and control," Applied Energy, Elsevier, vol. 92(C), pages 147-161.
    2. Marcinichen, Jackson Braz & Wu, Duan & Paredes, Stephan & Thome, John R. & Michel, Bruno, 2014. "Dynamic flow control and performance comparison of different concepts of two-phase on-chip cooling cycles," Applied Energy, Elsevier, vol. 114(C), pages 179-191.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duan, Zhongdi & Ren, Tao & Ding, Guoliang & Chen, Jie & Mi, Xiaoguang, 2017. "Liquid-migration based model for predicting the thermal performance of spiral wound heat exchanger for floating LNG," Applied Energy, Elsevier, vol. 206(C), pages 972-982.
    2. Yan, Huaxia & Xia, Yudong & Deng, Shiming, 2017. "Simulation study on a three-evaporator air conditioning system for simultaneous indoor air temperature and humidity control," Applied Energy, Elsevier, vol. 207(C), pages 294-304.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Penglei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2015. "Experimental investigation on two-phase thermosyphon loop with partially liquid-filled downcomer," Applied Energy, Elsevier, vol. 160(C), pages 10-17.
    2. Jagirdar, Mrinal & Lee, Poh Seng, 2017. "A diagnostic tool for detection of flow-regimes in a microchannel using transient wall temperature signal," Applied Energy, Elsevier, vol. 185(P2), pages 2232-2244.
    3. Sharma, Chander Shekhar & Tiwari, Manish K. & Zimmermann, Severin & Brunschwiler, Thomas & Schlottig, Gerd & Michel, Bruno & Poulikakos, Dimos, 2015. "Energy efficient hotspot-targeted embedded liquid cooling of electronics," Applied Energy, Elsevier, vol. 138(C), pages 414-422.
    4. Zhang, Shiwei & Chen, Jieling & Sun, Yalong & Li, Jie & Zeng, Jian & Yuan, Wei & Tang, Yong, 2019. "Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe," Renewable Energy, Elsevier, vol. 135(C), pages 1133-1143.
    5. Habibi Khalaj, Ali & Abdulla, Khalid & Halgamuge, Saman K., 2018. "Towards the stand-alone operation of data centers with free cooling and optimally sized hybrid renewable power generation and energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 451-472.
    6. Xin, Fei & Ma, Ting & Wang, Qiuwang, 2018. "Thermal performance analysis of flat heat pipe with graded mini-grooves wick," Applied Energy, Elsevier, vol. 228(C), pages 2129-2139.
    7. Jiaqiang, E. & Zhao, Xiaohuan & Liu, Haili & Chen, Jianmei & Zuo, Wei & Peng, Qingguo, 2016. "Field synergy analysis for enhancing heat transfer capability of a novel narrow-tube closed oscillating heat pipe," Applied Energy, Elsevier, vol. 175(C), pages 218-228.
    8. Oró, Eduard & Depoorter, Victor & Garcia, Albert & Salom, Jaume, 2015. "Energy efficiency and renewable energy integration in data centres. Strategies and modelling review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 429-445.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:160:y:2015:i:c:p:266-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.