IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3509-d190969.html
   My bibliography  Save this article

On a Roadmap for Future Industrial Nuclear Reactor Core Simulation in the U.K. to Support the Nuclear Renaissance

Author

Listed:
  • Bruno Merk

    (School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
    National Nuclear Laboratory, Chadwick House, Warrington WA3 6AE, UK)

  • Mark Bankhead

    (National Nuclear Laboratory, Chadwick House, Warrington WA3 6AE, UK)

  • Dzianis Litskevich

    (School of Engineering, University of Liverpool, Liverpool L69 3GH, UK)

  • Robert Gregg

    (National Nuclear Laboratory, Chadwick House, Warrington WA3 6AE, UK)

  • Aiden Peakman

    (National Nuclear Laboratory, Chadwick House, Warrington WA3 6AE, UK)

  • Craig Shearer

    (National Nuclear Laboratory, Chadwick House, Warrington WA3 6AE, UK)

Abstract

The U.K. has initiated the nuclear renaissance by contracting for the first two new plants and announcing further new build projects. The U.K. government has recently started to support this development with the announcement of a national programme of nuclear innovation. The aim of this programme with respect to modelling and simulation is foreseen to fulfil the demand in education and the build-up of a reasonably qualified workforce, as well as the development and application of a new state-of-the-art software environment for improved economics and safety. This document supports the ambition to define a new approach to the structured development of nuclear reactor core simulation that is based on oversight instead of looking at detail problems and the development of single tools for these specific detail problems. It is based on studying the industrial demand to bridge the gap in technical innovation that can be derived from basic research in order to create a tailored industry solution to set the new standard for reactor core modelling and simulation for the U.K. However, finally, a technical requirements specification has to be developed alongside the strategic approach to give code developers a functional specification that they can use to develop the tools for the future. Key points for a culture change to the application of modern technologies are identified in the use of DevOps in a double-strata approach to academic and industrial code development. The document provides a novel, strategic approach to achieve the most promising final product for industry, and to identify the most important points for improvement.

Suggested Citation

  • Bruno Merk & Mark Bankhead & Dzianis Litskevich & Robert Gregg & Aiden Peakman & Craig Shearer, 2018. "On a Roadmap for Future Industrial Nuclear Reactor Core Simulation in the U.K. to Support the Nuclear Renaissance," Energies, MDPI, vol. 11(12), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3509-:d:190969
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3509/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3509/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merk, Bruno & Stanculescu, Alexander & Chellapandi, Perumal & Hill, Robert, 2015. "Progress in reliability of fast reactor operation and new trends to increased inherent safety," Applied Energy, Elsevier, vol. 147(C), pages 104-116.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aiden Peakman & Bruno Merk, 2019. "The Role of Nuclear Power in Meeting Current and Future Industrial Process Heat Demands," Energies, MDPI, vol. 12(19), pages 1-16, September.
    2. Wuseong You & Ser Gi Hong, 2017. "An Advanced Sodium-Cooled Fast Reactor Core Concept Using Uranium-Free Metallic Fuels for Maximizing TRU Burning Rate," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    3. Olumayegun, Olumide & Wang, Meihong & Kelsall, Greg, 2017. "Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR)," Applied Energy, Elsevier, vol. 191(C), pages 436-453.
    4. Bruno Merk & Anna Detkina & Dzianis Litskevich & Maulik Patel & Omid Noori-kalkhoran & Gregory Cartland-Glover & Olga Efremova & Mark Bankhead & Claude Degueldre, 2022. "A First Step towards Zero Nuclear Waste—Advanced Strategic Thinking in Light of iMAGINE," Energies, MDPI, vol. 15(19), pages 1-21, September.
    5. Bruno Merk & Dzianis Litskevich & Anna Detkina & Omid Noori-kalkhoran & Lakshay Jain & Elfriede Derrer-Merk & Daliya Aflyatunova & Greg Cartland-Glover, 2023. "iMAGINE—Visions, Missions, and Steps for Successfully Delivering the Nuclear System of the 21st Century," Energies, MDPI, vol. 16(7), pages 1-16, March.
    6. Bruno Merk & Anna Detkina & Dzianis Litskevich & Seddon Atkinson & Gregory Cartland-Glover, 2020. "The Interplay between Breeding and Thermal Feedback in a Molten Chlorine Fast Reactor," Energies, MDPI, vol. 13(7), pages 1-15, April.
    7. Bruno Merk & Anna Detkina & Seddon Atkinson & Dzianis Litskevich & Gregory Cartland-Glover, 2019. "Evaluation of the Breeding Performance of a NaCl-UCl-Based Reactor System," Energies, MDPI, vol. 12(20), pages 1-18, October.
    8. Bruno Merk & Anna Detkina & Dzianis Litskevich & Omid Noori-kalkhoran & Lakshay Jain & Gregory Cartland-Glover, 2022. "A HELIOS-Based Dynamic Salt Clean-Up Study Analysing the Effects of a Plutonium-Based Initial Core for iMAGINE," Energies, MDPI, vol. 15(24), pages 1-17, December.
    9. Bruno Merk & Dzianis Litskevich & Karl R. Whittle & Mark Bankhead & Richard J. Taylor & Dan Mathers, 2017. "On a Long Term Strategy for the Success of Nuclear Power," Energies, MDPI, vol. 10(7), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3509-:d:190969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.