IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v487y2025ics0096300324005459.html
   My bibliography  Save this article

The iteration time and the general position number in graph convexities

Author

Listed:
  • Araujo, Julio
  • Dourado, Mitre C.
  • Protti, Fábio
  • Sampaio, Rudini

Abstract

In this paper, we study two graph convexity parameters: iteration time and general position number. The iteration time was defined in 1981 in the geodesic convexity, but its computational complexity was so far open. The general position number was defined in the geodesic convexity and proved NP-hard in 2018. We extend these parameters to any graph convexity and prove that the iteration number is NP-hard in the P3 convexity. We use this result to prove that the iteration time is also NP-hard in the geodesic convexity even in graphs with diameter two, a long standing open question. These results are also important since they are the last two missing NP-hardness results regarding the ten most studied graph convexity parameters in the geodesic and P3 convexities. We also prove that the general position number of the monophonic convexity is W[1]-hard (parameterized by the size of the solution) and n1−ε-inapproximable in polynomial time for any ε>0 unless P=NP, even in graphs with diameter two. Finally, we also obtain FPT results on the general position number in the P3 convexity and we prove that it is W[1]-hard (parameterized by the size of the solution).

Suggested Citation

  • Araujo, Julio & Dourado, Mitre C. & Protti, Fábio & Sampaio, Rudini, 2025. "The iteration time and the general position number in graph convexities," Applied Mathematics and Computation, Elsevier, vol. 487(C).
  • Handle: RePEc:eee:apmaco:v:487:y:2025:i:c:s0096300324005459
    DOI: 10.1016/j.amc.2024.129084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324005459
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Jing & Xu, Kexiang, 2021. "The general position number of Cartesian products involving a factor with small diameter," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    2. Anand, Bijo S. & Chandran S. V., Ullas & Changat, Manoj & Klavžar, Sandi & Thomas, Elias John, 2019. "Characterization of general position sets and its applications to cographs and bipartite graphs," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 84-89.
    3. Zeynep Ertem & Eugene Lykhovyd & Yiming Wang & Sergiy Butenko, 2020. "The maximum independent union of cliques problem: complexity and exact approaches," Journal of Global Optimization, Springer, vol. 76(3), pages 545-562, March.
    4. Mitre Dourado & Dieter Rautenbach & Vinícius Santos & Philipp Schäfer & Jayme Szwarcfiter & Alexandre Toman, 2013. "Algorithmic and structural aspects of the P 3 -Radon number," Annals of Operations Research, Springer, vol. 206(1), pages 75-91, July.
    5. Renhua Li & Leonie U Hempel & Tingbo Jiang, 2015. "A Non-Parametric Peak Calling Algorithm for DamID-Seq," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-12, March.
    6. Klavžar, Sandi & Rus, Gregor, 2021. "The general position number of integer lattices," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cicerone, Serafino & Di Stefano, Gabriele & Klavžar, Sandi, 2023. "On the mutual visibility in Cartesian products and triangle-free graphs," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    2. Tian, Jing & Xu, Kexiang, 2021. "The general position number of Cartesian products involving a factor with small diameter," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    3. Carlos V. G. C. Lima & Dieter Rautenbach & Uéverton S. Souza & Jayme L. Szwarcfiter, 2022. "On the computational complexity of the bipartizing matching problem," Annals of Operations Research, Springer, vol. 316(2), pages 1235-1256, September.
    4. Danny Hermelin & Matthias Mnich & Simon Omlor, 2024. "Serial batching to minimize the weighted number of tardy jobs," Journal of Scheduling, Springer, vol. 27(6), pages 545-556, December.
    5. Van Bang Le & Sheng-Lung Peng, 2018. "On the complete width and edge clique cover problems," Journal of Combinatorial Optimization, Springer, vol. 36(2), pages 532-548, August.
    6. Klavžar, Sandi & Rus, Gregor, 2021. "The general position number of integer lattices," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    7. Goharshady, Amir Kafshdar & Mohammadi, Fatemeh, 2020. "An efficient algorithm for computing network reliability in small treewidth," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    8. Danny Hermelin & Shlomo Karhi & Michael Pinedo & Dvir Shabtay, 2021. "New algorithms for minimizing the weighted number of tardy jobs on a single machine," Annals of Operations Research, Springer, vol. 298(1), pages 271-287, March.
    9. Johannes Blum, 2022. "W[1]-hardness of the k-center problem parameterized by the skeleton dimension," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2762-2781, November.
    10. Duv{s}an Knop & v{S}imon Schierreich, 2023. "Host Community Respecting Refugee Housing," Papers 2302.13997, arXiv.org, revised Mar 2025.
    11. Hans L. Bodlaender & Josse Dobben de Bruyn & Dion Gijswijt & Harry Smit, 2022. "Constructing tree decompositions of graphs with bounded gonality," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2681-2699, November.
    12. Édouard Bonnet & Sergio Cabello, 2021. "The complexity of mixed-connectivity," Annals of Operations Research, Springer, vol. 307(1), pages 25-35, December.
    13. Fomin, Fedor V. & Fraigniaud, Pierre & Golovach, Petr A., 2022. "Present-biased optimization," Mathematical Social Sciences, Elsevier, vol. 119(C), pages 56-67.
    14. Klaus Heeger & Danny Hermelin & George B. Mertzios & Hendrik Molter & Rolf Niedermeier & Dvir Shabtay, 2023. "Equitable scheduling on a single machine," Journal of Scheduling, Springer, vol. 26(2), pages 209-225, April.
    15. Juho Lauri & Sourav Dutta & Marco Grassia & Deepak Ajwani, 2023. "Learning fine-grained search space pruning and heuristics for combinatorial optimization," Journal of Heuristics, Springer, vol. 29(2), pages 313-347, June.
    16. Niels Lindner & Julian Reisch, 2022. "An analysis of the parameterized complexity of periodic timetabling," Journal of Scheduling, Springer, vol. 25(2), pages 157-176, April.
    17. Matthias Bentert & René van Bevern & André Nichterlein & Rolf Niedermeier & Pavel V. Smirnov, 2022. "Parameterized Algorithms for Power-Efficiently Connecting Wireless Sensor Networks: Theory and Experiments," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 55-75, January.
    18. Lucci, Mauro & Nasini, Graciela & Severín, Daniel, 2024. "Solving the List Coloring Problem through a branch-and-price algorithm," European Journal of Operational Research, Elsevier, vol. 315(3), pages 899-912.
    19. Di Stefano, Gabriele, 2022. "Mutual visibility in graphs," Applied Mathematics and Computation, Elsevier, vol. 419(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:487:y:2025:i:c:s0096300324005459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.